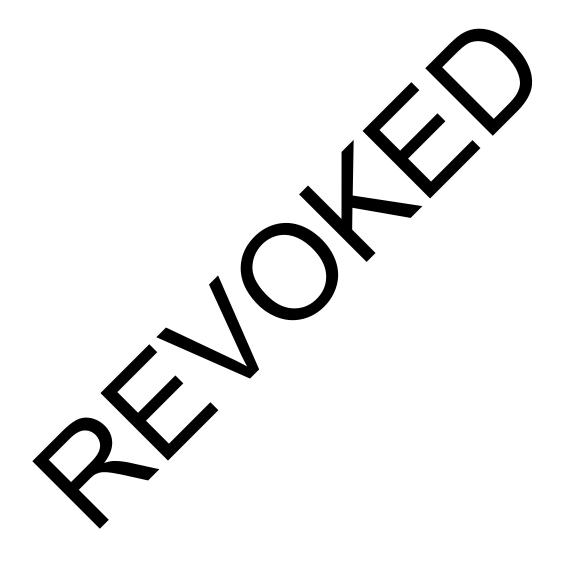
The annex is a prescriptive part of ISPM 27:2006.

ISPM 27 Annex 4

INTERNATIONAL STANDARDS FOR PHYTOSANITARY MEASURES


ISPM 27 DIAGNOSTIC PROTOC

DP 4: Tilletia indica Mit a (2014)

CONTENTS

1.	Pest Info	ormation	DP 4-3		
	2.	Taxonomic Information	DP 4-3		
3.	Detection				
	3.1	Examination of seeds/grar	DP 4-4		
	3.2	Extraction of ten ores from seeds/grain, size-selective sieve wash test	DP 4-4		
4.	Identification				
	4.1	Morp' nogy of hospores	DP 4-5		
	4.1.1	Morphe of a identification	DP 4-6		
	4.1.2	hology clarison with other Tilletia species	DP 4-6		
	4.2	Isola on and gonination of teliospores	DP 4-6		
	4.2.1	f teliospores	DP 4-7		
	4.2.2	termination of similar <i>Tilletia</i> species	DP 4-9		
	4.2.3	Revery of single teliospores	DP 4-9		
	4.3	Molecular identification	DP 4-9		
	4.3.1	Restriction enzyme analysis of the ITS1 region	DP 4-10		
	4.3.2	Conventional PCR assay using species-specific primers	DP 4-11		
	4.3.3	PCR assay using species-specific primers and a fluorescent probe	DP 4-11		
	4.3.4	Direct real-time PCR on teliospores	DP 4-12		
	4.3.4.1	Amplification of <i>Tilletia</i> DNA before proceeding to real-time PCR	DP 4-12		
	4.3.4.2	Real-time five-plex fluorescent PCR assay for species identification	DP 4-13		
5.	Records	5	DP 4-14		
6	Contact	Points for Further Information	DP /-1/		

7.	Acknowledgements	. DP 4-15
8.	References	. DP 4-15
9.	Figures	. DP 4-18

1. Pest Information

Tilletia indica Mitra causes the disease Karnal bunt, also known as partial bunt, of wheat (*Triticum* spp.). Karnal bunt was first described in Karnal, India, in 1931. The pathogen is widespread in parts of South Asia and Southwest Asia (USDA, 2007; Wiese, 1987). It has also been detected in certain areas of the United States and Mexico, and in South Africa (Crous *et al.*, 2001; Fuentes-Davila, 1996).

Hosts include $Triticum\ aestivum$, $Triticum\ durum\ and\ Triticum\ aestivum imes Secale\ cereale$. Records on $Triticum\ aestivum imes Secale\ cereale\ are\ rare$; however, $Secale\ spp$. have been shown to have the potential to be a host (Sansford $et\ al.$, 2008). $T.\ indica$ has been shown to infect other grass species under glasshouse conditions but has never been detected in the field in these alternative hosts (Inman $et\ al.$, 2003).

T. indica is a floret-infecting smut pathogen. Seeds are infected through the ger d of the kernel and the fungus develops within the pericarp where it produces a powdery orownish. ck mass of teliospores. When fresh, the spore masses produce a foetid, decaying fishsmell (trim hylamine). Unlike systemic smuts, it is not usual for all the seeds on an ear to be in ected with T. indica, and heads with infected seeds do not differ in appearance. from hea (Figure 1). Seeds are usually only partially colonized, showing varying degree ion (Figure 2). Therefore it is very difficult to detect the disease in the field. The ms are pot usually seen until after harvest, unless infestation levels are high.

T. indica reduces grain quality by discolouring and imparting an objects, ole odour to the grain and products made from it. It also causes a small reducion containing more than 3% bunted kernels is consider unsatisfactory for human consumption (Fuentes-Davila, 1996).

e confused ith T indica and are commonly found in There are other *Tilletia* species that can harvested grain or seeds. These inclu e *T* tia walkeri a pathogen of Lolium perenne and Lolium and T. ehrhartae (a pathogen of Ehrharta multiflorum), T. horrida (a pathogen a spp.T. ehrna. are found to contaminate harvested seed of calycina). In Australia, T. walkeri and vida are present in the United States and are detected in Triticum aestivum. T. walker and T. ho harvested seed of Triticu gially where Oryza spp. and Lolium spp. are grown in rotation with Triticum stivum (Castle 1998; Castlebury and Carris, 1999; Pascoe et al., 2005). logical milarity of these pathogens, accurate identification is important. Because of the morp

2. Taxonomic In Lation

Name: Til' aa indica Mitra, 1931

Synony : Neovossia indica (Mitra) Mundkur, 1941

Taxonomh Eukaryota, Fungi, Basidiomycota, Ustilaginomycotina,

Exobasidiomycetes, Exobasidiomycetidae, Tilletiales, Tilletiaceae

Common name: Karnal bunt or partial bunt

Reference: MycoBank 267835

3. Detection

The diagnostic scheme for *T. indica*, as presented in Figure 3, describes procedures for the detection of teliospores in seeds or grain of host plants. Seeds or grain samples are visually examined for the presence of bunted kernels (section 3.1). If a bunted kernel is detected, teliospores can be removed and *T. indica* can be identified by morphology (section 4.1).

If no bunted kernels are detected in the sample, the sample may be tested for the presence of teliospores by using a size-selective sieve wash test on three subsamples (section 3.2). However, such testing may not distinguish between infested grain and grain contaminated with teliospores on the seed surface. If no teliospores are detected after the size-selective sieve wash test, the diagnostic result of

the sample is negative. If teliospores are detected, the number of teliospores detected will determine which method can be used for identification:

- If 10 or more teliospores are detected, the first step is identification of the species of the teliospores (section 4.1) by morphology. If further confirmation is required, the next step is *either* isolation of the teliospores and germination (section 4.2.1) followed by the molecular protocols described in sections 4.3.1–4.3.3 *or* removal of individual teliospores (section 4.2.3) followed by a direct real-time polymerase chain reaction (PCR) on the individual teliospores (section 4.3.4). (Refer to A, B and C in Figure 3.)
- If fewer than 10 teliospores are detected, for reliable discrimination between *T. indica* and similar species it is highly recommended that the size-selective sieve wash test is repeated on new subsamples. The detection limit may or may not be the same as the regulatory limit.

In this diagnostic protocol, methods (including reference to brand names) are described as published, as these defined the original level of sensitivity, specificity and/or reproducibility achieved.

3.1 Examination of seeds/grain

Direct visual examination either for bunted kernels or for teliosp contan ed or grain surfaces is not considered a reliable method for phytosanitary pu d kernels may be detected by visual examination with the naked eye in conjunc low power microscopy (10– g sample 40× magnification). This protocol is based on the examination f seeds or grain; the n of a whole sample needs to be examined for bunted kernels (Fig eae seeds (for example *Lolium* spp.). The symptoms observed and the presence of the other Poac seeds is recorded.

If bunted kernels are present, a positive diagnosis can be made based on the morphology of the teliospores. Microscope slides of the teliospores made and the morphology of these teliospores described. If the morphology of the teliospores is a sistent with that of *T. indica* (refer to section 4.1 and Figures 4–8) a positive diagnosis can be not de.

To help visualize symptoms, kernels on be poaked in .2% NaOH for 24 h at 20 °C, which mildly bleaches the endosperm and makes the tackens of an atom stand out in stark contrast. This process is especially useful for chemically treate seed lots where coloured dyes may obscure symptoms (Agarwal and Mathur, 1992; Nature and Cunfer, 1993). With severe infestation and contamination, teliospores may be seen at the surface and its (Mathur and Cunfer, 1993).

In the absence of a nted kernels the size-selective sieve wash test (section 3.2) may be used to determine whether *T. di* a is present or not present in the sample. Alternatively, in the absence of bunted kernels indica may be considered not to be present. If seed of *Lolium* spp. is found contaminating the sample the sample a high probability that *T. walkeri* will be detected in the sample.

3.2 Exaction of a pores from seeds/grain, size-selective sieve wash test

The size-selective sieve wash test is a reliable method for detecting *T. indica* teliospores in an untreated sample of *Triticum aestivum*, *Triticum durum* or *Triticum aestivum* × *Secale cereale*. It is important that a minimum of three replicate subsamples of 50 g each is tested to ensure detection of teliospores if they are present in the sample (refer to Table 1 for the number of samples required to detect different numbers of teliospores). This method has, on average, an 82% efficiency of recovery, and microscopic examination typically requires only a few slides per 50 g sample. The method is described below and further details are available from Inman *et al.* (2003), Peterson *et al.* (2000) and Wright *et al.* (2003). The detection limit may or may not be the same as the regulatory limit.

It is important that all equipment is soaked before use for 15 min in a bleach solution (1.6% sodium hypochlorite (NaOCl) active ingredient) to eliminate the risk of false positives by cross-contamination from previous samples. Bleach kills teliospores and makes them appear hyaline compared with their normally dark, pigmented appearance. All equipment is rinsed with tap water after soaking.

The 50 g sample of untreated seed is placed in an Erlenmeyer flask (250 ml) with 100 ml 0.01% Tween 20 aqueous solution. The sample is placed on a shaker for 3 min at 200 r.p.m. to release the teliospores, then it is poured onto a 53 µm sieve sitting on top of a 20 µm sieve, which is sitting inside a funnel on top of another flask (500 ml). The flask that contained the sample is then rinsed twice with approximately 50 ml sterile tap water each time: the rinsing water is poured over the sample sitting in the sieve. The sample is further washed with sterile tap water (200–300 ml) using an aspirator bottle to ensure good removal of the teliospores from the seed. The sample and the 53 µm sieve are removed. The 20 µm sieve is tilted to a 45° angle and, using an aspirator bottle filled with sterile tap water, the debris is washed on the sieve from the top to the bottom with a sidewards sweeping motion, going backwards and forwards. This process washes all teliospores recovered from the sample into the lower part of the sieve. The teliospores and debris are then washed into a 15 ml conical centrifuge tube. It is important that polypropylene tubes are used as the teliospores will stick to the sides of polycarbonate tubes, giving false results. These steps are repeated until the 20 µm sieve appears clean. The final volume in the tube will be approximately 8 ml. If necessary, the 20 µm sieve nined under a low power microscope to check for residual teliospores.

The collected suspension is centrifuged at 1000 g for 3 min to coll ospores s they are denser than most of the debris collected during the wash test. The ation for the relative centrifugal force (RCF (g)) from r.p.m. is RCF = 1.12 r_{max} (r.p. the maximum radius (mm) from the centre of rotation to the bottom of the ge tube The supernatant is carefully removed, without disturbing the pellet, using a nev Pasteu pette. The pellet can dispos then be examined under the microscope. If the pellet is to be added to dilute the thick, v suspension, and the pellet stirred with a pipette tip ensu an even su ension is obtained, before examination under the microscope.

The whole pellet suspension is placed in 2 µ1 reconto microscope slide and covered with a coverslip. The slides are examined using bright field microscopy at 20–40× magnification. It is important to examine every square millipetre of the spension on the slide for the presence of teliospores. If teliospores are found the morphological characteristics (e.g. size, colour and ornamentation) and the number of teliospores and ornach slide are recorded.

Table 1. Number of replicate 50 subsample required to detect different levels of contamination with specified confidences, assuming an equal distriction of liospores (Peterson *et al.*, 2000)

	No. replicate	samples required for dete level of confidence (%	
Contamination (1.5 to tell shores per 50 g samule)	99%	99.9%	99.99%
	3	5	6
	2	3	4
5	1	1	1

4. Identification

Identification of *T. indica* is based on either (a) symptoms on kernels and morphology of teliospores, or (b) morphology of teliospores and detection of the unique DNA sequence by one of the PCR techniques (see Figure 3).

4.1 Morphology of teliospores

When suspect teliospores are found in a sieve wash test, the kernels in both the washed subsample(s) and the parent sample could be re-examined for symptoms. If symptoms are found, they should be

confirmed by microscopic examination of the teliospores. Any grass seeds found in the sample should also be examined for signs of bunt infestation and, if found, the associated teliospores should be examined microscopically. If the teliospores found in the sieve wash test are the same as those found on bunted kernels a diagnosis can be made. If, however, no bunted kernels are found in the larger sample, testing with one of the molecular tests (sections 4.3.1–4.3.4) is recommended for identification.

Table 2 lists the morphological characteristics of *T. indica* teliospores as well as teliospores of the common *Tilletia* species that can be found in seeds or grain shipments and confused with *T. indica*.

4.1.1 Morphological identification

T. indica teliospores are globose to subglobose, sometimes with a small hyphal fragment (more common on immature teliospores, but occasionally found on mature teliospores): mostly 22-47 µm in diameter, occasionally larger, up to 64 µm (mean 35-41 µm); pale orange dark, reddish brown; mature teliospores black and opaque (Figures 4 and 5); densely ith sharply rnamented pointed to truncate spines, occasionally with curved tips, 1.4–5.0 (–7.0) high, which in surface view appear as either individual spines (densely echinulate) or close space arrow ges (finely cerebriform) (Figures 4 and 5); the spines are covered by a thin hy ne membran et al., 2006; CMI, 1983).

Sterile cells of *T. indica* are globose, subglobose to lachrym orm (h. shaped) fellowish brown, $10-28 \,\mu\text{m} \times 48 \,\mu\text{m}$, with or without an apiculus (short stalk), with smooth was up to $7 \,\mu\text{m}$ thick and laminated. Sterile cells are likely to be uncommon in feved ashings (Ca. *s et al.*, 2006; CMI, 1983).

If 10 or more teliospores are present in a sieve wash test, on the morphological identification can be confirmed. If fewer than 10 teliospores are detected, orphological characteristics are not considered completely reliable for confident identification (EPPO, 007). In this case it is recommended that the sample is resampled by preparing new subsamples from the original 1 kg and tested.

4.1.2 Morphological comparison with over Till a species

The most important morphological cha cteristics that discriminate T. indica, T. walkeri, T. horrida and T. ehrhartae are teliospore (range and mean), ornamentation and colour (Table 2; Figures 4– 8). Published reports often vary on sp. The spore size is affected by the mounting medium and by heating treatments ascoe at al. (2005) showed that in Australia, T. walkeri and T. ehrhartae are common contamina s of ha ested Triticum aestivum. In the United States, the morphologically and T. walk genetically similar f and also T. horrida are known contaminants of harvested Triticum aes ry ap Carris, 1999; Cunfer and Castlebury, 1999; Smith et al., 1996). In entioned in Table 2, other tuberculate-spored *Tilletia* species may be addition to lica (Durán, 1987; Durán and Fischer, 1961; Pimentel et al., 1998). These species with T. confuse are less li be found as contaminants of Triticum aestivum. They include Tilletia barclayana ut of various Poaceae, e.g. Panicum and Paspalum), Tilletia eragrostidis (on sensu lato a inolens (on Lachnagrostis filiformis), Tilletia rugispora (on Paspalum) and Eragrostis), Til Tilletia boutelouae (on Bouteloua gracilis). None of these morphologically similar species has been found to naturally infest Triticum aestivum.

The median teliospore spin profiles can be enhanced by bleaching the teliospores in 10% NaOCl for 15–20 min. If necessary, teliospores can then be rinsed twice in water and stained, for example with trypan blue or cotton blue in lactoglycerol (Figure 8).

4.2 Isolation and germination of teliospores

There are now two methods available to confirm the identification of teliospores detected in the sieve wash test (section 3.2). There is the standard procedure of recovering the teliospores from the slide and inducing their germination (section 4.2.1) and a new procedure developed by Tan *et al.* (2009) that enables PCR to be done directly on a single teliospore recovered from the slide (section 4.2.3).

4.2.1 Germination of teliospores

T. indica is a facultative biotroph. To produce cultures, teliospores are soaked in water, quickly surface-sterilized and then germinated on water agar plates.

The teliospores can be recovered from the slides and coverslips by washing them with distilled water over the $20 \,\mu m$ sieve and then into a clean sterile conical centrifuge tube (as in section 3.2). The volume should be approximately 3–5 ml. The tubes are incubated overnight at 21 °C to hydrate the teliospores and make fungal and bacterial contaminants more susceptible to subsequent surface sterilization. After overnight incubation, the teliospores are pelleted by centrifugation at $1200 \, g$ for 3 min.

The supernatant is removed and the teliospores are sterilized by suspending the pellet in 5 ml bleach (0.3–0.5% NaOCl active ingredient), inverting the tube quickly three times and centrifuging at 1200 g for 1 min. Some teliospores can be killed if the total time in the bleach min. As an alternative to bleach treatment, teliospores can be surface-sterilized for 3 nl acidified nin in 5−1 electrolyzed water (AEW). AEW effectively surface-sterilizes teliospores with a 1t, compare 2 min bleach treatment, stimulates rather than reduces teliospore germ 1999). The ation (ide et a teliospores are then washed twice by removing the supernatant, re spending the n 1 ml sterile distilled water (SDW) and centrifuging at 1200 g for 5 min.

The pellet is resuspended in 1 ml SDW and 200 µl of the diosport dispensions is placed aseptically onto 2% water agar with antibiotics (WA+A) plates and spread with a will preader. The antibiotics used are 60 mg penicillin-G (Na salt) and 200 mg trepto tycin sulphate per litre of agar (EPPO, 2007). The WA+A plates are incubated at 21 °C with 12 to the plates are left for about 5 days before being sealed or placed inside clear restriction.

After 7–14 days, non-dormant teliospor pro yeelium bearing 32-128 or more produce basidiospores (primary sporidia) at its tip. nese colonies roduce secondary sporidia typically of two types: filiform and allantoid. These d be cultured directly on solid media (Figure 9) or liquid the nutrient media such as potato dextrose ks of agar $(1 \text{ cm} \times 1 \text{ cm})$ bearing germinated teliospores or colonies are cut out and hen stuck to the underside of a Petri dish lid so that the germinated teliospore is facing surfac of the broth. This allows the sporidia to be released onto the broth surface. The dishes °C with a 12 h light cycle. After 2–3 days, basidiospores e incuba deposited onto the brot surface produce s al mats of mycelia of approximately 0.5–1.0 cm diameter. Each mycelial mat with a sterile dissecting needle, and touched onto sterile filter paper to remove remove excessive br mycelam is placed in suitable vials (e.g. 1.5–2.0 ml microcentrifuge $^{\circ}$, or stored at -80 $^{\circ}$ C for later DNA extraction. tubes) for imp extract

Germinat in of tell spores it molecular analysis may not always be possible; for example, if seeds are treate with the case of fungicide-treated grain. Increasing the number of sieved replicates in ancrease the number of teliospores recovered and hence the number of teliospores that can be germinated. Teliospores can have a period of dormancy, which can effect germination (Carris et al., 2006). This can be resolved by carrying out direct real-time PCR on individual teliospores (see section 4.3.4).

Table 2. Morphological characteristics of teliospores of Tilletia indica, Tilletia walkeri, Tilletia horrida and Tilletia ehrhartae, and hosts associated with these four species

Species	Teliospore size (µm)	Teliospore size (mean) (µm)	Teliospore colour	Teliospore shape	Teliospore sheath	Teliospore spines	Host
T. indica ^a	22–64	35–41	Pale orange-brown to dark reddish brown, mature spores black to opaque	Globose to subglobose	Present	1.4–5(–x. ym In or face very, densely whinulate or as usely spaces parrow dges (finely cerebriform). In more an view, smoother more complete true due to the being densely arranged or sionally with curved tips.	<i>Triticum</i> spp.
T. walkeri ^b	28–35	30–31	Pale yellow to dark reddish brown (never black or opaque)	Globose	Physint, extends to its of prescritions hyality to yellow his brown	3–6 um Coarse +/– cerebriform. Wide incompletely cerebriform ridges in surface view. In median view, profile is irregular with gaps between spines.	Lolium perenne and Lolium multiflorum
T. horrida ^c	14–36 (mature <25)	24–28	Light to dark chestnut brown, can be soni- opaque	Glorose to subgribose	extending to the ends of the spines, hyaline to tinted	1.5–4 µm Frequently curved, and appear as polygonal scales in surface view.	<i>Oryza</i> spp.
T. ehrhartae ^d	17–25	no data	Very data l'acceous comp whe mature. Can e opaque because of more of the cales.	lobose to subglobose	Present, extending to the apex of the spines or slightly beyond	1–2.5 µm Cylindrical or slightly tapered spines. In surface view, rarely cerebriform. Larger, acute polygonal scales. In median view, broadly truncated to slightly rounded at apex.	Ehrharta calycina

Notes: ^aBased on Inman *et al.* (2003). ^bBased on Castleb , 1998; Milbrath *et al.*, 1998; Castlebury and Carris, 1999; Cunfer and Castlebury, 1999. ^cAs *T. barclayana*: Durán and Fischer, 1961; CMI, 1965; Durán, 1987; Castlebury and Carris, 1999. As *T. horrida*: Khanna and Payak, 1968; Aggarwal *et al.*, 1990; Castlebury, 1998. ^cPascoe *et al.*, 2005.

4.2.2 Germination of similar *Tilletia* species

In culture, *T. walkeri* and *T. indica* produce very similar colonies. On potato dextrose agar (PDA) after 14 days at 19 °C with a 12 h light cycle, both species typically produce white to cream-coloured slow-growing irregular crustose colonies, approximately 4–6 mm in diameter (Figure 9). In contrast, comparable cultures of *T. horrida* grow significantly more slowly (colonies only 2–3 mm in diameter) because of their higher optimal temperature. *T. horrida* isolates may also produce a reddish purple pigment (Figure 9), both on PDA and potato dextrose broth.

4.2.3 Recovery of single teliospores

After the teliospores are examined and their morphology is recorded, the slide is allowed to dry out, either with or without the coverslip on. When the coverslip is removed, it is placed on the slide upside down so it can be checked for teliospores adhering to it.

On another slide a single piece of a coverslip obtained by cutting into tiny p ces (1×1) 2) is placed that has been sterilized (autoclaved at 121 °C for 15 min or baked at 170' or 2 h). A ul drop of Tris-ethylenediaminetetraacetic acid (EDTA) (TE) buffer is placed or of coy slip. Under this p either a compound or a dissecting microscope, a single teliospore fine needle and placed into the droplet of TE buffer. The teliospore will nsfer 1 .. Using forceps the dropk another sterilized small piece of coverslip is placed on to **h**. The teliospore is e glas crushed by using the forceps to press down on the coverslip and the andwich is transferred et al., 2009). into a 0.2 ml PCR tube. The coverslip is crushed further with

The procedure then followed is as described in section 4.

4.3 Molecular identification

There are a number of molecular method available for the identification of *T. indica*. Any of the methods described below may be used, twever, it is essential that reference material (positive controls) has been obtained from expels in the area (ref. to section 6).

The first three protocols described belowork well but rely upon germination of the teliospores so that sufficient DNA can be extracted from the mycelial mat produced. Germination of the teliospores can take up to three week. Peterson and 1000) found the average teliospore germination rate to be 55%, which severely educes the chances of identifying the teliospores by these three molecular methods. A fourth plecular protocol is then described that does not rely upon germination of the teliospores.

nces exist between T. indica, T. walkeri and T. horrida in their Diagnostic nuclear ndrial (m. DNA. Interspecific polymorphisms have been identified using various PCR met Indom amplification of polymorphic DNA (RAPD), restriction fragment length polyn whism (RFLP) and amplified fragment length polymorphism (AFLP) (Laroche et al., 1998; Pimentel al., 1998). In the nuclear ribosomal (r) DNA internal transcribed spacer (ITS) 1 and 2 regions, there is >98% similarity between T. walkeri and T. indica sequences (Levy et al., 2001). However, within the ITS1 region, T. walkeri has a diagnostically important restriction enzyme site (Sca1) that is not present in T. indica, T. horrida or other closely related species (Levy et al., 2001; Pimentel et al., 1998). mtDNA sequence differences have enabled species-specific primers to be designed for T. indica and T. walkeri (Frederick et al., 2000). These primers can be used in conventional PCR assays, in a TaqMan® system in conjunction with a probe (Frederick et al., 2000) or real-time multiplex assay with five probes (Tan et al. 2009).

4.3.1 Restriction enzyme analysis of the ITS1 region

The target gene region is the ITS region of the nuclear rRNA gene (Pimentel *et al.*, 1998). The PCR amplicon produced includes both ITS1 and ITS2 and the conserved fragment 5.8S. This amplicon is approximately 670 base pairs (bp) including primer sequences. Oligonucleotides used for *T. indica*:

Forward primer ITS1 (5'-TCC GTA GGT GAA CCT GCG G-3')

Reverse primer ITS4 (5'-TCC TCC GCT TAT TGA TAT GC-3') (White et al., 1990).

DNA is extracted from mycelium. This is done either by grinding up the mycelium using a mortar and pestle or by placing approximately 0.1 g mycelium in a sterile 2 ml microcentrifuge tube one-third full with sterile 0.5 mm glass beads and 1 ml molecular grade water (MGW). The tube is sealed with a screw lid containing an o-ring and oscillated in a beadbeater or in a tissue lyser on quarter power for 5 min. The ground sample is allowed to stand for 30 s, then its DNA is extracted using a proprietary DNA extraction kit for fungi. No DNA cleanup is required. The extracted DN and a limit immediately, kept overnight at 4 °C or stored at -20 °C for longer periods.

PCR to produce the restriction amplicon uses the following mastermix (concentration per 0 μ l single reaction): $1 \times$ PCR buffer (containing 1.5 mM MgCl₂ (Applied Biosystems))¹, by mM α each dNTP, 1.25 μ l AmpliTaq (5 U/ μ l) (Applied Biosystems), 0.5 μ M each power and 1 μ l expected DNA. PCR cycling parameters are: 94 °C denaturation for 2 min; 30 cycles of 94 °C for 1 min, 54 °C for 1 min and 72 °C for 1 min; and a 72 °C extension step for 10 min.

Restriction of the PCR amplicon is done as follows. Restr ntration per 20 µl single tion mix (reaction): 7.3 µl MGW, 2.0 µl restriction buffer (Proga) $2 \mu l$ boyine serum albumin (10 $\mu g/\mu l$), 0.5 µl restriction enzyme (either Taq1 or Sca1 at 10 U/L omega) and 10.0 µl neat DNA amplicon solution as produced above (>50 ng/µl DNA) ubated for 3 h at 37 °C, and the reaction is gently mixed by inversion during ind products are stored at 4 °C before ricte oation. R visualizing on a gel. When required, 10 µl action produ is loaded with a suitable marker and run on a 2% gel.

The assay is positive for *T. indica* if a plified anples are cut with restriction enzyme Taq1 to (1), 170 and 260 bp) and there is no cut with Sca1. A positive give five products (occurring \$\art 60\$, 70, 1 result for T. walkeri is obta test samples are restricted with *Taq1* to give the same five fragments as with T. ind , but Scal amplified products to give two fragments: at 140 bp and produce comes from T. horrida, Taq1 produces four DNA fragments (60, 110, 520 bp. If the amplify duces no cuts. Other *Tilletia* species give different restriction patterns 150 and 335 bp) an with these and other en el et al., 1998). es (Pime

-

¹ The use of products of the brand Applied Biosystems in this diagnostic protocol implies no approval of them to the exclusion of others that may also be suitable. This information is given for the convenience of users of this protocol and does not constitute an endorsement by the CPM of the chemical, reagent and/or equipment named. Equivalent products may be used if they can be shown to lead to the same results.

² The use of products of the brand Promega in this diagnostic protocol implies no approval of them to the exclusion of others that may also be suitable. This information is given for the convenience of users of this protocol and does not constitute an endorsement by the CPM of the chemical, reagent and/or equipment named. Equivalent products may be used if they can be shown to lead to the same results.

4.3.2 Conventional PCR assay using species-specific primers

This assay was designed by Frederick et al. (2000) using mtDNA³, producing an amplicon of 414 bp. Oligonucleotides used for *T. indica*:

Forward primer Tin 3 (5'-CAA TGT TGG CGT GGC GC-3')

Reverse primer Tin 4 (5'-CAA CTC CAG TGA TGG CTC CG-3').

DNA is extracted from mycelium. This is done by grinding 0.5-1.0 g mycelium in a 1.5 ml microcentrifuge tube with 75 µl lysis buffer and then grinding further with a sterile pestle attached to a power drill. An additional 75 µl lysis buffer is added before extracting DNA using a proprietary DNA extraction kit for fungi. No DNA cleanup is required. Extracted DNA is used immediately, kept overnight at 4 °C or stored at -20°C for longer periods.

PCR for this assay uses the following mastermix (concentration per 25 µl signature) ction): 1x PCR buffer (containing 10 mM Tris-HCl, 50 mM KCl (pH 8.3), 1.5 mM MgCl₂ a /v) gelatin); dATP, dGTP, dCTP and dTTP, each at a concentration of 0.1 μM; each mer at a con ntration of 0.1 μM; 0.5 U of AmpliTag DNA polymerase; and 1.0 μl extracted DN d as descr ed above.

PCR cycling parameters are: 94 °C denaturation for 1 min; 25 cyc °C for 15 s and 72 °C for 15 s; and a 72 °C extension step for 6 min.

As required, 10 µl reaction product is loaded with a suitable arker run on % agarose gel.

When testing for T. walkeri, the Tin 3 primer is replaced w h 0.1 µl for rd primer Tin 11 (5'-TAA) TGT TGG CGT GGC AT-3') (25 µM). This produces

Positive reactions produce a single amplicor oth T. indica (primers Tin 3/Tin 4) and lica-specific primers do not produce T. walkeri (primers Tin 11/Tin 4). If the walkeri-NA samples *are* positive), then the sample positive results for the test samples (but po itive control such as extractions belong to another Tilletia horrida. Restriction enzyme analysis may sped enable further species identification of ales if uired (section 4.3.1).

Alternatively, no amplification can result from poor quality DNA. This can be checked by testing TS1 extracts with the universal prime. d ITS4) described in section 4.3.1. If the samples contain e not T. indica or T. walkeri but another Tilletia species, good quality DNA and nce test samp. proximilarly 670 bp) will be produced when PCR amplicons are run on an then a single band still not produced, fresh DNA should be extracted and retested. agarose gel. If ampl ation

specific primers and a fluorescent probe 4.3.3 PCR

This ass gned by ederick et al. (2000) using genomic DNA, producing an amplicon of was de 212 bp. 0 d for *T. indica*:

primer Tin 3 (5'-CAA TGT TGG CGT GGC GC-3')

er Tin 10 (5'-AGCTCCGCCTCAAGTTCCTC-3')

RT probe: TaqMan® probe (10 µM) (Applied Biosystems): 5'-(FAM label)-ATT CCC GGC TTC GGC GTC ACT-(TAMRA quencher)-3'.

DNA is extracted from mycelial tissue as described in section 4.3.2.

give the desired amplicon when the primers are derived from the extracted and purified T. indica mitochondrial DNA; therefore, the three submitted sequences refer to genomic DNA.

³ Ferreira and colleagues submitted the GenBank accession numbers AF218058, AF218059 and AF218060. This mitochondrial sequence shares low homology with a T. indica mitochondrial DNA sequence with accession number DQ993184: BLAST results show only approximately 30% homology. The base composition of the AT content in mitochondrial DNA is higher than the GC content, which is generally 30-40% (Kurtzman, 1985), however, the AT content of the three sequences in GenBank submitted by Ferreira and colleagues is 43.5%, which is lower than the GC content (56.55%). (C) The primers TIN3/Tin4 cannot amplify mitochondrial DNA to

PCR for this assay uses the following mastermix (concentration per 25 μ l single reaction): 1× TaqMan® Universal Master Mix, 0.4 μ M of either Tin3/Tin10 or Tin11/Tin10 primers and 4 μ M of the probe, 12.5 ng genomic DNA for both *T. indica-* and *T. walker-*specific assays (obtained as in section 4.3.2). PCR cycling parameters are: 50 °C for 2 min, 95 °C for 10 min, and 34 cycles of 95 °C for 15 s and 60 °C for 1 min.

Optical-grade reaction tubes and caps should be used to allow real-time amplification to be monitored.

When testing for *T. walkeri*, Tin 3 is replaced with 1.0 µl forward primer Tin 11 (5'-TAA TGT TGG CGT GGC AT-3') (25 µM), which produces an amplicon of 212 bp.

T. indica produces amplification with primers Tin 3/Tin 10 and T. walkeri with primers Tin 11/Tin 10. If neither primer set produces amplification but control samples react as expected, then the sample extractions belong to another *Tilletia* species, such as *T. horrida*. When testing for *T. indica* and the threshold cycle (Ct) of the sample is >33, the result indicates that it is neg indica and is *valkeri* and highly likely to be another species of *Tilletia*. Likewise, when testing for *T* Ct is >33, the result indicates that it is negative for T. walkeri and is highly likely be anothe species of Tilletia. Restriction enzyme analysis may enable further species of the samples if ntificati required (section 4.3.1).

No amplification can result from poor quality DNA. This can be seed d by testing extracts with the universal primers (ITS1 and ITS4) described in section 4.1. If a sample contain good quality DNA and hence test samples are not *T. indica* or *T. walker* but anothe. We have species, then a single band (approximately 670 bp) will be produced when PCR amplicons are run on an agarose gel. If amplification is still not produced, fresh DNA should be set cited and dested.

The sensitivity limits of both the *T. indica* at *T. we veri* a gays were found to be 5 pg total DNA. This concentration produced detectable leeds of fluor cence (Frederick *et al.*, 2000). The species specificity of the assays was tested against DNA expected from *T. barclayana*, *Tilletia tritici*, *Tilletia laevis*, *Tilletia controversa* and *Tilletia fusca*. None of these isolates amplified in either the *T. indica*- or the *T. walkeri*-specific assays (Frederick *et al.*, 2000).

4.3.4 Direct real-time PC telios pres

This assay was designed to use the ITS region that occurs between the nuclear y Tan et av It was found that *Tilletia* species have two variable regions (ITS1 and small and large subu ved 5.8S rRNA gene (Levy et al., 2001; Tan and Murray, 2006). The ITS2) separated by atially applify Tilletia-specific DNA and then use real-time PCR and protocol is designed species of *Tilletia*. The ITS1 region in rDNA was targeted in this fluorescent ide study for e desi of the atiplex assay; a five-plex fluorescent PCR assay to identify closely etia s related 1 ected in grain.

An aliquot of the reaction mix is added to the PCR tube (from section 4.2.3) and using the same pipette tip the gas sandwich is crushed into pieces to release the spore material. It is important to ensure the PCR tube is not cut during the crushing.

4.3.4.1 Amplification of *Tilletia DNA* before proceeding to real-time PCR

Amplification of *Tilletia*-specific DNA of various *Tilletia* species is performed with primers MK56 (5'-GTA GGT GAA CCT GCG GAA GGA TCA TT-3') (Tan *et al.*, 1996) and Tilletia-R (5'-CAA GAG ATC CGT TGT CAA AAG TTG-3') (Tan and Murray, 2006). Each PCR is performed in 20 μ l (single reaction) containing 1.5 mM MgCl₂, 200 μ M each of the four deoxynucleotides dATP, dTTP, dCTP and dGTP, 0.5 μ M each of the primer pair and 0.5 U Taq DNA polymerase (Invitrogen⁴) in 1× buffer (50 mM Tris (pH 9.0), 20 mM NaCl, 1% Triton X-100 and 0.1% gelatin).

-

⁴ The use of products of the brand Invitrogen in this diagnostic protocol implies no approval of them to the exclusion of others that may also be suitable. This information is given for the convenience of users of this

The thermal cycling parameters are: an initial cycle of 95 °C for 3 min; 20 cycles of 94 °C for 20 s, 63 °C for 30 s and 72 °C for 30 s, with the annealing temperature decreased by 1 °C per cycle for 5 cycles to 59 °C; and finally a 10 min and 1 min incubation at 72 °C and 4 °C, respectively.

The restricted products may be stored at 4 $^{\circ}$ C. If visualizing on a gel, 10 μ l reaction product is loaded with a suitable marker and run on a 2% agarose gel. The expected fragment size is 260 bp. However, this fragment will not be visible if the PCR is done on a single teliospore, as there will not be enough DNA present.

4.3.4.2 Real-time five-plex fluorescent PCR assay for species identification

Real-time PCR assays with the dual-labelled probes and oligonucleotide primers (Table 3) in $20\,\mu l$ reactions in 0.1 ml microfuge tubes are performed in the Rotor-Gene 6000 instrument (Qiagen⁵). The five-plex reaction mixture consists of $1\times$ ImmoBuffer (Bioline⁶, 5 mM MgCl₂, 200 µM of each of the four deoxynucleotides dATP, dTTP, dCTP and dGTP, 1 U Immolas DA Polymerase (Bioline) and $0.2\,\mu M$, $0.4\,\mu M$ and $0.9\,\mu M$ of each of the dual-labelled grobes, the pur forward primers and the four reverse primers, respectively (Table 3). The template DA is $1\,\mu l$ DR product from the PCR amplification of *Tilletia*-specific DNA (section 4.3.4.1)

The thermal cycling parameters are an initial cycle of 95 °C for 12 min foll wed by Cycles of 94 °C for 15 s and 65 °C for 60 s, with the annealing temperature decreased by 1°C percycle for 6 cycles to 60 °C. The dynamic tube normalization option is used to determine the average background of each individual sample before amplification commences. Fluore sence data we corded to five channels: green, yellow, orange, red and crimson.

out of known positive *T. indica* spores The sensitivity of the test for single spores was 40% only 10–40% gave positive PCR results) (7 009). This sensitivity arises from of a ores and bunted grain had to be autoclaved number of reasons, including the fact that 1 T. indica twice so there may have been a ldeterior ion of genet material. The specificity of the probe for T. indica was investigated in a DNA of T. indi :T. walkeri or T. ehrhartae or T. caries, in aixt range indicated from single-spore analysis). ratios of 1:0.1 pg and 0.1:1 pg (approp ite c The specificity of the primers was tested nd they were found not to react with other *Tilletia* species.

Standard curves for each detection of each species should be generated as described in Tan *et al.* (2009) using known concentrations of Tan *a* spp. DNA. The Ct value (the value of the cycle where the amplification curve crosses the threshold line) obtained is used to set the threshold for that *Tilletia* species being tested. In general, a Ct value greater than that set in this step is considered a negative result.

protocol and does not constitute an endorsement by the CPM of the chemical, reagent and/or equipment named. Equivalent products may be used if they can be shown to lead to the same results.

⁵ The use of products of the brand Qiagen in this diagnostic protocol implies no approval of them to the exclusion of others that may also be suitable. This information is given for the convenience of users of this protocol and does not constitute an endorsement by the CPM of the chemical, reagent and/or equipment named. Equivalent products may be used if they can be shown to lead to the same results.

⁶ The use of products of the brand Bioline in this diagnostic protocol implies no approval of them to the exclusion of others that may also be suitable. This information is given for the convenience of users of this protocol and does not constitute an endorsement by the CPM of the chemical, reagent and/or equipment named. Equivalent products may be used if they can be shown to lead to the same results.

Table 3. Sequences and modifications of the primers and probes used in the five-plex fluorescent PCR diagnostic assay for *T. indica* and other related *Tilletia* spp.

Primer pairs (sequence 5'-3')	Probes (modifications 5', 3')	Channel	Target
KB-DL-For: CTTCGGAAGAGTCTCCTT (nt. 64–81 ^a) KB-DL- Rev:	ACGGAAGGAACGAGGC (nt. 105–120) (6-FAM, BHQ1)	Green	T. indica
CCGGACAGGTACTCAG (nt. 127–142)	ACGGAAGGAACAAGGC (nt. 67–82 ^b) (JOE, BHQ1)	Yellow	T. walkeri
Hor-DL-For: GGCCAATCTTCTCTACTATC (nt. 40–59°) Hor-DL-Rev: CCGGACAGGATCACTA (nt. 87– 102)	CAACCCAGACTACGGAGGGTGA (nt. 60–81) (CAL Fluor Red 610, BHQ2)	Orange	(some strage are not detected)
Tri-DL-For: ATTGCCGTACTTCTCTTC (nt. 56–73 ^d) Tri-DL-Rev: GTAGTCTTGTGTTTGGATAATAG (nt. 99–112)	AGAGGTCGGCTCTAATCC ATC A (nt. 75–97) (Quasar 670, BHQ2)	ęd	road range*
Ehr-DL-For: CGCATTCTTATGCTTCTTG (nt. 72–90°) Ehr-DL-Rev: GTTAGGAACCAAAGCCATC (nt. 128–146)	CAGAGT CATTGGTTCT CGGAG C (4. 104 126) (Qui, ar 70 RHQ2)	Crimson	T. ehrhartae

Notes: GenBank accession probers are ^aAF39845. 310180, ^cAF310171, ^dAF398447 and ^eAY770433. The list of the reference material used ar palace of ordin is in Tan *et al.* (2009), and material is held at Elizabeth Macarthur Agricultural Institute (EMAI), NSW Bank of Prime Industries in Australia (See section 6, contact points. nt., nucleotide.

5. Rec ds

Refer to tion 27:2006 for the list of information that needs to be recorded and retained.

The report of the diagnosis should include the number of positive subsamples and the estimated number of telios, res detected in each positive subsample. If cultures were obtained for molecular analysis, the colony morphology, especially any pigmentation, and growth rate under defined conditions should be described. Cultures should be kept (mycelium from broths or mycelial plugs from agar plates can be stored frozen at $-80~^{\circ}$ C).

6. Contact Points for Further Information

Further information on this organism can be obtained from:

Department of Agriculture and Food, Government of Western Australia, South Perth, WA 6151, Australia (Ms Dominie Wright; e-mail: dominie.wright@agric.wa.gov.au; tel: +61 8 9368 3875; fax: +61 8 474 2658).

Elizabeth Macarthur Agricultural Institute (EMAI), New South Wales Department of Primary Industries, Camden, NSW 2570, Australia (Dr Mui-Keng; email: mui-keng.tan@idpi.nsw.gov.au).

^{*}Includes T. caries, T. laevis T. troversa, T. bromi, T. goloskokovii.

- Laboratory of Plant Inspection and Quarantine, Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, 518045 Guangdong Province, China (Dr Guiming Zhang; email: zgm2001cn@yahoo.com.cn; tel: +86 755 8211 1148; fax: +86 755 2558 8630).
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), North Atlantic Area (NAA), Fort Detrick, MD 21702, USA (Mr Gary Peterson; email: gary.peterson@ars.usda.gov).
- USDA Animal and Plant Health Inspection Service (APHIS), Riverdale, MD, USA (Dr Mary Palm; email: Mary.E.Palm@aphis.usda.gov).
- USDA APHIS, Beltsville, MD, USA (Dr John McKemy; email: John.M.McKemy@aphis.usda.gov)
- Food and Environment Research Agency, York YO41 1LZ, United Kingdom (Dr Kelvin Hughes; email: Kelvin.Hughes@fera.gsi.gov.uk).

A request for a revision to a diagnostic protocol may be submitted by national plant protection organizations (NPPOs), regional plant protection organizations (RPPO or commission on Phytosanitary Measures (CPM) subsidiary bodies through the IPPC Secret at (ippc@fa org), which will in turn forward it to the Technical Panel to develop Diagnostic Protocols (PPDP).

7. Acknowledgements

The basis of this protocol was originally drafted by A.J. Inman, N. D. Yaghes and R.J. Bowyer, Food and Environment Agency, York, United Kingdom, in 2003. hat preceded was a g-tested in European laboratories (Riccioni *et al.*, 2002) and has formed the asis of the EP 3 protocol PM 7/29(2) (EPPO, 2007).

The protocol has been enhanced by D.G. Wright, Departs of Agriculture and Food, Government of Western Australia, Perth, Australia; K.J.D. Lagnes, Food of Environment Agency, York, United Kingdom; and G. Zhang, Laboratory of Plant Inspection and Quarantine, Shenzhen, China. V. Cockerell, Science and Advice for Scottis Agriculture Edinburgh, United Kingdom, reviewed the protocol.

8. References

- **Agarwal, V.K. & Mathur, S.D.** 1922. Direction of karnal bunt in wheat seed samples treated with fungicides. FAO *F* and Protection 2012 *etin*, 40: 148–153.
- **Aggarwal, R., Joshi L.M. & Singh, D.V.** 1990. Morphological differences between teliospores of *Neovossia ina.* and *A. horrida. Indian Phytopathology*, 43: 439–442.
- Bonde, M.R. Meter, S.A., Kharat, A., Smilanick, J.L., Frederick, R.D. & Schaad, N.W. 1999. Comparison of effect of acidic electrolyzed water and NaOCl on *Tilletia indica* teliospore gentination Plant Disease, 83: 627–632.
- Carris, L. Stlebury, L.A. & Goates, B.J. 2006. Nonsystemic bunt fungi *Tilletia indica* and *T. horria*. A review of history, systematics, and biology. *Annual Review of Phytopathology*, 44: 113–133.
- **Castlebury, L.A.** 1998. Morphological characterisation of *Tilletia indica* and similar fungi. *In* V.S. Malik & D.E. Mathre, eds. *Bunts and smuts of wheat: An international symposium*, pp. 97–105. Ottawa, North American Plant Protection Organization. 445 + xv pp.
- **Castlebury, L.A. & Carris, L.M.** 1999. *Tilletia walkeri*, a new species on *Lolium multiflorum* and *L. perenne*. *Mycologia*, 91: 121–131.

_

⁷ A. Radova, State Phytosanitary Administration, Olomouc, Czech Republic; I. Vloutoglou, Benaki Phytopathological Institute, Athens, Greece; A. Porta-Puglia, Istituto Sperimentale per la Patologia Vegetale, Rome, Italy; C. Montuschi, Servizio Fitosanitario Regionale, Bologna, Italy; I. van Brouwershaven, NPPO, Wageningen, The Netherlands; M. de Jesus Gomes, E. Diogo and M.R. Malheiros, Direcção-Geral de Protecção das Culturas, Lisbon, Portugal; V. Cockerell, Science and Advice for Scottish Agriculture, Edinburgh, United Kingdom; A. Barnes, Food and Environment Research Agency (FERA), York, United Kingdom.

- **CMI (Commonwealth Mycological Institute).** 1965. *Tilletia barclayana*. Descriptions of Pathogenic Fungi and Bacteria No. 75. Wallingford, UK, CAB International.
- **CMI** (Commonwealth Mycological Institute). 1983. *Tilletia indica*. Descriptions of Pathogenic Fungi and Bacteria No. 748. Wallingford, UK, CAB International.
- Crous, P.W., Jaarsveld, A.B. van, Castlebury, L.A., Carris, L.M., Frederick, R.D. & Pretorius, Z.A. 2001. Karnal bunt of wheat newly reported from the African continent. *Plant Disease*, 85: 561.
- **Cunfer, B.M. & Castlebury, L.A.** 1999. *Tilletia walkeri* on annual ryegrass in wheat fields in the southeastern United States. *Plant Disease*, 83: 685–689.
- **Durán, R.** 1987. Ustilaginales of Mexico: Taxonomy, symptomatology, spore germination, and basidial cytology. Seattle, Washington State University. 331 + xvi pp.
- **Durán, R. & Fischer, G.W.** 1961. *The genus* Tilletia. Seattle, WA, Washington State University. 138 pp.
- **EPPO** (European and Mediterranean Plant Protection Organization). 07. Diagno. c protocols for regulated pests. PM 7/29(2). *Tilletia indica. OEPP/EPPO Bulletin*, 3: 503–520
- Frederick, R.D., Snyder, K.E., Tooley, P.W., Berthier-Schaad, J., Peterson, S.L., onde, M.R., Schaad, N.W. & Knorr, D.A. 2000. Identification and differentiation of The dividica and T. walkeri using the polymerase chain reaction. *Phytopatholo*, 90: 51–960.
- **Fuentes-Davila, G.** 1996. Karnal bunt. *In R.D.* Wilcoxson J. E.E. S. ri, eds. Ant and smut diseases of wheat: Concepts and methods of disease managen and matter (CIMM ST). 7 pp.
- Inman, A.J., Hughes, K.J.D. & Bowyer, R. 2003. Proceed for extraoding teliospores from untreated seed or grain by size-selective sieving and recommendation protocol for the diagnosis of a quarantine organism: Tilletia indicate pp. 21–26. UK is partment for Environment, Food and Rural Affairs, DIAGPRO (EU Foject on Diagnostic Protocols). 38 pp. Available at http://www.fera.defra.gov.uk/plants
- ISPM 27. 2006. Diagnostic protocols for regulatea pests. Rome, IPPC, FAO.
- **Khanna, A. & Payak, M.M.** Telio ore morphology of some smut fungi. II. Light microscopy. *Mycologia*, 60: 655–662.
- **Kurtzman, C.P.** 198 Molecular taxonomy of the fungi. pp 35–63. *In* W. Bennett & L.L. Lasure, eds. *Gene ma*, pulaticular in fungi. Orlando, FL, Academic Press, Inc. 558 pp.
- Laroche, A., Gaudet, A., Desrus, T., Lee, A. & Kristjansson, G. 1998. Distinction between strained for hall but and class bunt using amplified fragment length polymorphism (AFLP). *In* V.S. Malik & D.E. Maye, eds. *Bunts and smuts of wheat: An international symposium*, p. 127. Ot va, No. 15 is an Plant Protection Organization. 445 + xv pp.
- Levy, L., Carris, L.M., Meyer, R.J., Pimentel, G. 2001. Internal transcribed spacer strence-based phylogeny and polymerase chain reaction-restriction fragment length polymorphs in differentiation of *Tilletia walkeri* and *T. indica. Phytopathology*, 91: 935–940.
- **Mathur, S.B. & Cunfer, B.M.** 1993. Karnal bunt. *In* S.B. Mathur and B.M. Cunfer, eds. *Seed-borne diseases and seed health testing of wheat*, pp. 31–43. Frederiksberg, Denmark, Danish Government Institute of Seed Pathology for Developing Countries. 168 pp.
- **Milbrath, G.M., Pakdel, R. & Hilburn, D.** 1998. Karnal bunt spores in ryegrass (*Lolium* spp.). *In* V.S. Malik & D.E. Mathre, eds. *Bunts and smuts of wheat: An international symposium*, pp. 113–116. Ottawa, North American Plant Protection Organization. 445 + xv pp.
- **Pascoe, I.G., Priest, M.J., Shivas, R.G., Cunnington, J.H.** 2005. Ustilospores of *Tilletia ehrhartae*, a smut of *Ehrharta calycina*, are common contaminants of Australian wheat grain, and a potential source of confusion with *Tilletia indica*, the cause of Karnal bunt of wheat. *Plant Pathology*, 54: 161–168.

- **Peterson, G.L., Bonde, M.R. & Phillips, J.G.** 2000. Size-selective sieving for detecting teliospores of *Tilletia indica* in wheat seed samples. *Plant Disease*, 84: 999–1007.
- **Pimentel, G., Carris, L.M., Levy, L. & Meyer, R.** 1998. Genetic variability among isolates of *Tilletia barclayana, T. indica* and allied species. *Mycologia,* 90: 1017–1027.
- Riccioni, L., Valvassori, M., Inman, A.J., Hughes, K.J., Bowyer, R.J., Barnes, A.V., Montuschi, C. 2002. International validation of a diagnosis protocol for *Tilletia indica [Triticum Secale X Triticosecale]*. Internal report. Istituto Sperimentale per la Patologia Vegetale, Rome.
- Sansford, C.E., Baker, R.H.A., Brennan, J.P., Ewert, F., Gioli, B., Inman, A.J., Kinsella, A., Magnus, H., Miglietta, F., Murray, G.M., Porta-Puglia, A., Porter, J.R., Rafoss, T., Riccioni, L. & Thorne, F. 2008. The new pest risk analysis for *Tilletia indica*, the cause of Karnal bunt of wheat, continues to support the quarantine status of the pathogen in Europe. *Plant Pathology*, 57: 603–611.
- Smith, O.P., Peterson, G.L., Beck, R.J., Schaad, N.W. & Bonde, M.R. 1 o. Belopment of a PCR-based method for identification of *Tilletia indica*, causal agent of Karnal but of wheat. *Phytopathology*, 86: 115–122.
- Tan, M.-K. & Murray, G.M. 2006. A molecular protocol using denched RET probes for the quarantine surveillance of *Tilletia indica*, the causal agent of Karnal bunt of the *A. Mycological Research*, 110: 203–210.
- Tan, M.-K., Timmer, L.W., Broadbent, P., Priest, M. & C., P. 1987. Differentiation by Molecular Analysis of *Elsinoe* spp. Causing Scab D eases or tirus and Its Epidemiological Implications. *Phytopathology* 86:1039–1044.
- Tan, M.-K. & Wright, D.G. 2009. Enhancing the decent region indica, the cause of Karnal bunt. Final report. CRC20004: Karnal bunt & ction. Canberra, CRC National Plant Biosecurity. 63 pp.
- Tan, M.-K., Ghalayini, A., Sharma, I., Y. J., Shivas, Priest, M. & Wright, D. 2009. A one-tube fluorescent assay for the quarantine detection an identification of *Tilletia indica* and other grass bunts in wheat. *Australasia* Pla. Patholog 38: 101–109.
- USDA (United States Department of A riculture), 2007. Karnal bunt manual. Frederick, MD, USDA. 160 pp. Available at http://www.aphis.usch.gov/reset_e-port/plants/manuals/online_manuals.shtml (accessed February 2012).
- White, T.J., Bruns T., Lee J. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RN. gept for phylogenetics. *In M.A. Innis*, D.H. Gelfand, J.J. Sninsky and T.J. White, P.C. votocol A guide to methods and applications, pp. 315–322. London, Academic P. ss. 482.
- Wiese, W., ed. 87 Compendium of wheat diseases, 2nd ed. Saint Paul, MN, APS Press. 112 pp.
- Wright, D. V. fray, G. & Tan, M.-K. 2003. National diagnostic protocol for the identification of *Tilletia dica*, the cause of Karnal bunt. Perth, Australia, Department of Agriculture and Food, Government of Western Australia.

9. Figures

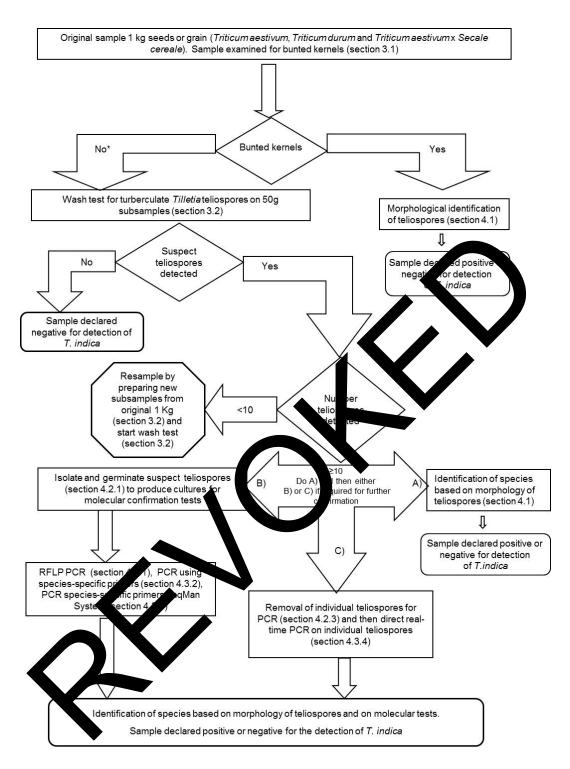

Figure 1. An infected head of wheat showing the symptoms of a stall bunt.

Photo courtesy Department of Agriculture and Ford, Government of Asstern Australia.

Figure 2. Infected grains of wheat showing the symptoms of Karnal bunt.

Photo courtesy Department of Agriculture and Food, Government of Western Australia.

^{*} In the absence of bunted kernals *T. indica* may be considered not to be present

Figure 3. Flow diagram showing the process to be used for the detection and identification of *Tilletia indica* in seed and grain samples.

PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism.

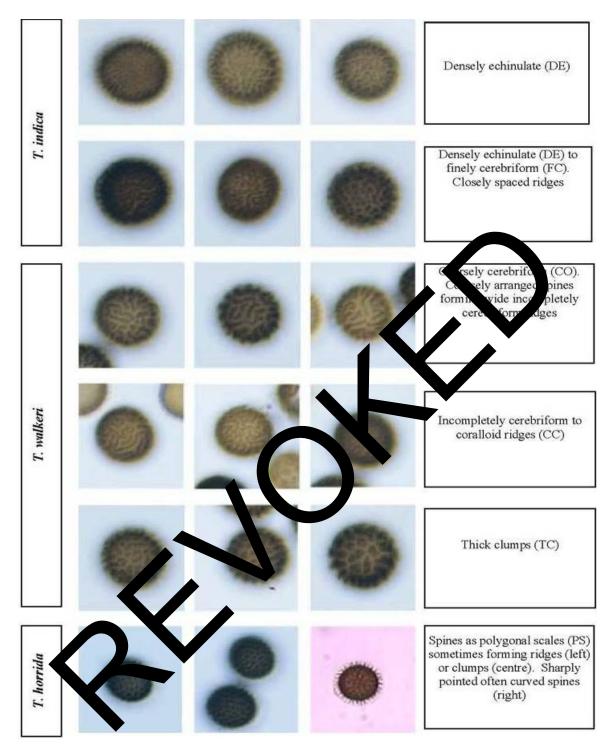


Figure 4. Pictorial key to *Tilletia* teliospore ornamentation. Use in conjunction with Table 2 (section 4.1).

Photos courtesy A. Inman, Central Science Laboratory, York, United Kingdom.

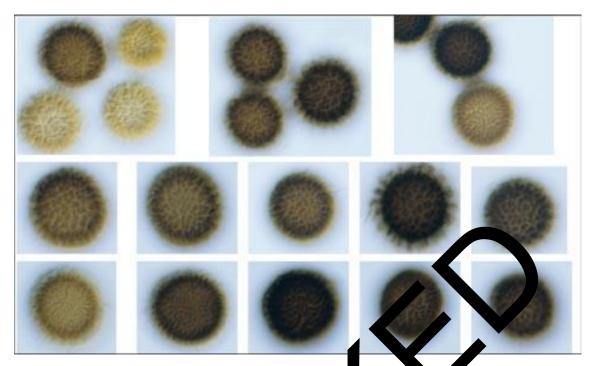
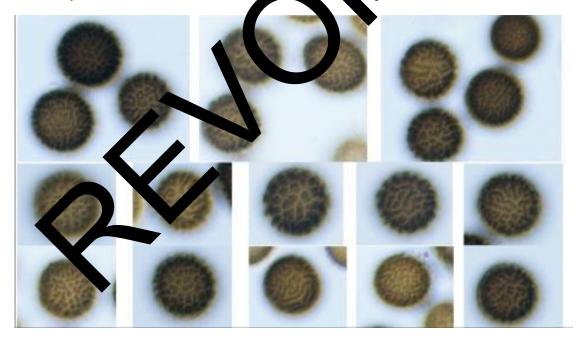
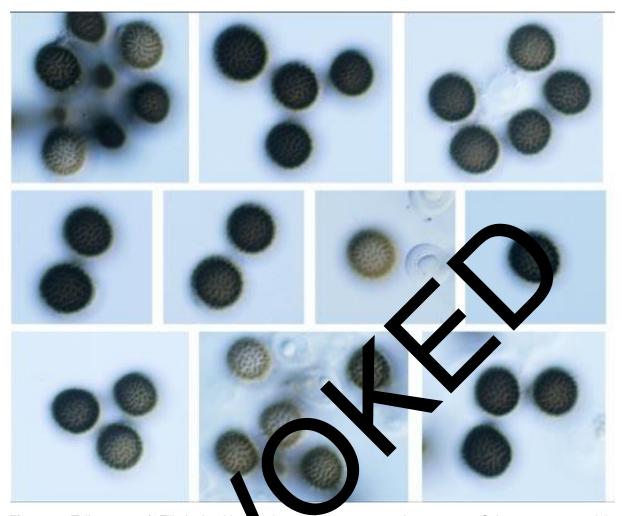
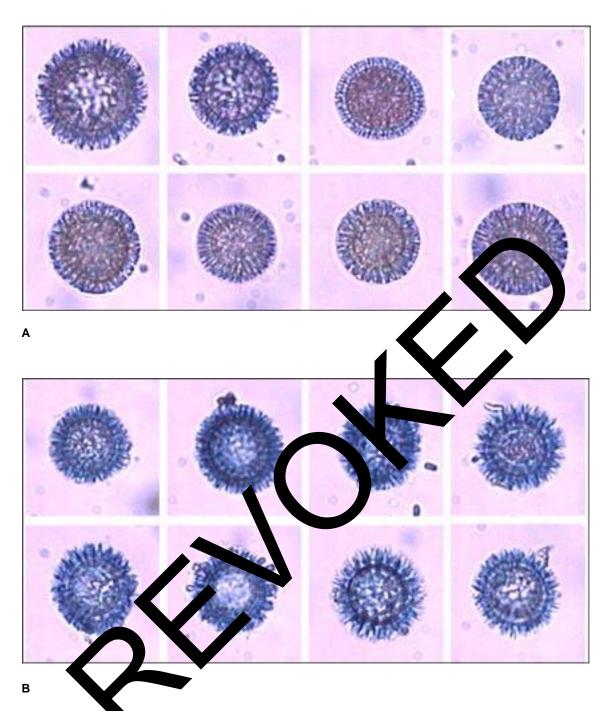



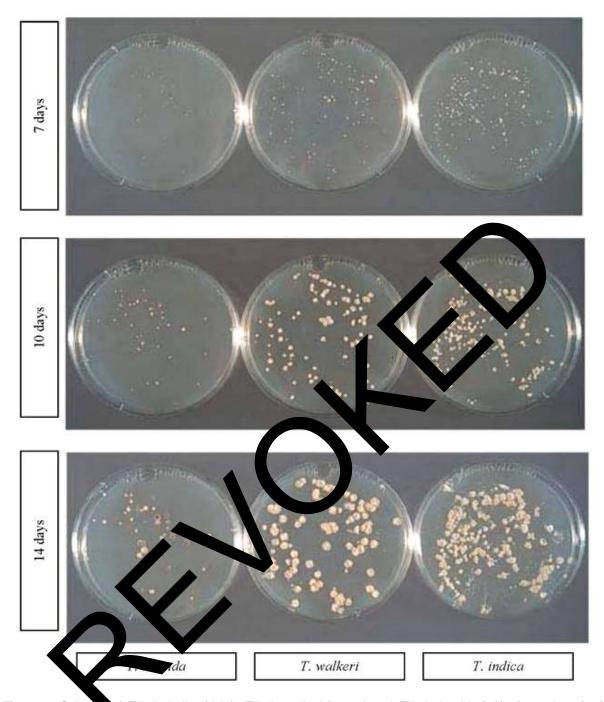
Figure 5. Teliospores of *Tilletia indica* showing surface ornamer ation patters, so where $\frac{1}{2}$ so are densely arranged, either individually (densely echinulate) or in closely expaced narrow ridge (finely cerebriform). Scale: 10 mm = 17 μ m.

Photos courtesy A. Inman, Central Science Laborate Univ. Kingdom.

Figure 6. Teliospores of *Tilletia walkeri* showing surface ornamentation patterns. Spines are coarsely arranged and form wide, incompletely cerebriform to coralloid ridges or thick clumps. Scale: 10 mm = 17 µm.

Photos courtesy A. Inman, Central Science Laboratory, York, United Kingdom.


Figure 7. Teliospores of *Tilletia horrida* s twing surface ornamentation patterns. Spines are arranged in polygonal scales or, occasionally, shriform legs. Scale: 10 mm = 17 μ m.

Photos courtesy A. Inman Jentral Science L. tory, York, United Kingdom.

Figure 8. Teliospess of *Tilletia indica* (A) and *Tilletia walkeri* (B) showing teliospore profiles in median view after bleaching and the training with lactoglycerol-trypan blue. Note the smoother outline of *T. indica* teliospores compared with the more irregular outline of *T. walkeri* teliospores, which have more obvious gaps between spines.

Photos courtesy A. Inman, Central Science Laboratory, York, United Kingdom.

Figure 9. Colonies of *Tilletia indica* (right), *Tilletia walkeri* (centre) and *Tilletia horrida* (left) after 7 days (top), 10 days (centre) and 14 days (bottom) on potato dextrose agar (PDA) at 19 °C and a 12 h dark/light cycle. Note the slower growth and purple pigmentation after 14 days for *T. horrida* colonies.

Photos courtesy A. Inman, Central Science Laboratory, York, United Kingdom.

Publication histo

This is not an official of the standard

2006-03 CPM-1 added the subject *Tilletia indica / T. controversa* (2004-014) under the topic: Fungi and fungus-like organisms

2012-11 SC approved draft for MC via e-decision

2012-07 member consultation

2013-05 SC approval for adoption via e-decision (returned to TPDP)

2013-06 TPDP revised

2013-10 to SC for approval for adoption via e-decision

2013-10 SC approved the draft for the 45-days notification period via e-decision

2013-12 45 days notification period

2014-01 SC adopted DP on behalf of CPM

2014-08 Secretariat corrected minor formatting issues

ISPM 27. 2006: Annex 4 Tilletia indica Mitra (2014)

Publication history last updated: 2014-09-11