

Produced by the Secretariat of the International Plant Protection Convention

This is not an official part of the standard
2001-04 ICPM-3 added topic Pest risk analysis for regulated non-quarantine pests (2001-003)
2002-05 SC approved Specification 9 Pest risk analysis for regulated nonquarantine pests
2003-02 EWG developed draft text
2003-05 SC-7 revised draft text and approved for MC
2003-06 Sent for MC
2003-11 SC revised draft text for adoption
2004-04 ICPM-6 adopted standard
ISPM 21. 2004. Pest risk analysis for regulated non-quarantine pests. Rome, IPPC, FAO.
Publication history: Last modified August 2011

CONTENTS

Adoption 21-5
INTRODUCTION 21-5
Scope 21-5
References 21-5
Definitions 21-5
Outline of Requirements 21-6
BACKGROUND. 21-7

1. Intended Use and Official Control 21-7
1.1 Intended use 21-7
1.2 Official control 21-7
REQUIREMENTS21-8
PEST RISK ANALYSIS FOR REGULATED NON-QUAR NTINE 21-8
2. Stage 1: Initiation 21-8
2.1 Initiation points 21-8
2.1.1 PRA initiated by the identifi on of pt for anting that could act as a pathway for RNQPs 21-8
2.1.2 PRA initiated by a pest 21-9
2.1.3 PRA initiated by the rev ror sion a phytosanitary policy 21-9
2.2 Identification of the PRA a 21-9
2.3 Information 21-9
2.4 Review previous PRAs. 21-9
2.5 Cond son of Ciation. 21-10
3. Stage 2: Pest Risk essment 21-10
3.1 Pes atego tio 21-10
3.1 Ele Ents for conegorization 21-10
3.1.1 entity or pest, host plant, part of plant under consideration and the intended 21-10
3.1.1.2 As ciation of the pest with the plants for planting and the effect on their intended
use 21-11
3.1.1.3 Pest presence and regulatory status 21-11
3.1.1.4 Indication of economic impact(s) of the pest on the intended use of the plants for planting 21-11
3.1.2 Conclusion of pest categorization 21-11
3.2 Assessment of the plants for planting as the main source of pest infestation 21-11
3.2.1 Life cycle of the pest and the host, pest epidemiology and sources of pest infestation 21-12
3.2.2 Determination of the relative economic impact of the sources of pest infestation. 21-12
3.2.3 Conclusion of the assessment of the plants for planting as the main source of pest infestation 21-13
3.3 Assessment of economic impacts on the intended use of the plants for planting 21-13
3.3.1 Pest effects 21-13
3.3.2 Infestation and damage thresholds in relation to the intended use 21-14
3.3.3 Analysis of economic consequences 21-14
3.3.3.1 Analytical techniques 21-14
3.3.4 Conclusion of the assessment of economic consequences. 21-15
3.4 Degree of uncertainty 21-15
3.5 Conclusion of the pest risk assessment stage 21-15
4. Stage 3: Pest Risk Management 21-15
4.1 Technical information required 21-16
4.2 Level and acceptability of risk 21-16
4.3 Factors to be taken into account in the identification and risk management options 21-16
4.3.1 Non-discrimination 21-16
4.4 Tolerances 21-17
4.4.1 Zero tolerance. 21-17
4.4.2 Selection of an appropriate tolerance level 21-18
4.5 Options to achieve the required tolerance leve 21-18
4.5.1 Area of production 21-18
4.5.2 Place of production 21-18
4.5.3 Parent stock 21-19
4.5.4 Consignment of plants for p ting 21-19
4.6 Verification of the tole ace vels 21-19
4.7 Conclusion of pest risk i 21-19
5. Monitoring and Review $\&$ Phytosan ry Measures 21-19
6. Documentation of Pg Risk Atr-sis. 21-20

Adoption

This standard was adopted by the Sixth Session of the Interim Commission on Phytosanitary Measures in March-April 2004.

INTRODUCTION

Scope

This standard provides guidelines for conducting pest risk analysis for regulated non-quarantine pests. It describes the integrated processes to be used for risk assessment and the selection of risk management options to achieve a pest tolerance level.

References

IPPC. 1997. International Plant Protection Convention. Rome, I
ISPM 1. 1993. Principles of plant quarantine as related to in natior trade. Rome, IPPC, FAO. [published 1995] [revised; now ISPM 1: 2006]
ISPM 2. 1995. Guidelines for pest risk analysis. Rome, IP ISPM 2: 2007]
ISPM 4. 1995. Requirements for the establishment of trame, IPPC, FAO. [published 1996]
ISPM 5. Glossary of phytosanitary terms.
ISPM 5 Supplement 1. 2001. Guideline on the inter etation and application of the concept of official control for regulated pe s. R
ISPM 5 Supplement 2. 2003. Guidelin son unde anding of potential economic importance and related terms including reference environtrental considerations. Rome, IPPC, FAO.
ISPM 6. 1997. Guidelines for villanc Rome, IPPC, FAO.
ISPM 10. 1999. Requir lents for tha ishment of pest free places of production and pest free production site Rome, rPPC, FAO.
ISPM 11. 2004. Pes isk lysis for quarantine pests including analysis of environmental risks and living modified ons. Misms. B IPPC, FAO.
ISPM 14. 02. use in grated measures in a systems approach for pest risk management. e, IPPD EAO.
ISPM 16. ro reguternion-quarantine pests: concept and application. Rome, IPPC, FAO.
WTO. 1994. reement on the Application of Sanitary and Phytosanitary Measures. Geneva, World Trade Ors zation.

Definitions

Definitions of phytosanitary terms used in the present standard can be found in ISPM 5 (Glossary of phytosanitary terms).

Outline of Requirements

The objectives of a pest risk analysis (PRA) for regulated non-quarantine pests (RNQPs) are, for a specified PRA area, to identify pests associated with plants for planting, to evaluate their risk and, if appropriate, to identify risk management options to achieve a tolerance level. PRA for RNQPs follows a process defined by three stages:

Stage 1 (initiating the process) involves identifying the pest(s) associated with the plants for planting that are not quarantine pests but which may be of regulatory concern and that should be considered for risk analysis in relation to the identified PRA area.

Stage 2 (risk assessment) begins with the categorization of individual pests associated with the plants for planting and their intended use to determine whether the criteria for an RNQP are satisfied. Risk assessment continues with an analysis to determine if the plants for planting are the main source of the pest infestation and if the economic impact(s) of \boldsymbol{y} on the intended use of those plants for planting are unacceptable.

Stage 3 (risk management) involves identifying a pest tolerance lever avoid the acceptable economic impact(s) identified at Stage 2 and management opti sto ach at that france.

BACKGROUND

Certain pests that are not quarantine pests are subject to phytosanitary measures because their presence in plants for planting results in economically unacceptable impacts associated with the intended use of those plants. Such pests are known as regulated non-quarantine pests, are present and often widespread in the importing country, and their economic impact should be known.

The objectives of a PRA for RNQPs are, for a specified PRA area, to identify pests associated with plants for planting, to evaluate their risk and, if appropriate, to identify risk management options to achieve a tolerance level.

Phytosanitary measures for RNQPs should be technically justified as required by the IPPC (1997). The classification of a pest as an RNQP and any restrictions placed on the import of species with which it is associated should be justified by PRA.

It is necessary to demonstrate that plants for planting are a pathway for the planting are the main source of infestation (transmission pathway economically unacceptable impact on the intended use of those the probability of establishment or the long-term economic im access to export markets) and environmental effects are RNQPs are already present.

Requirements for official control are set out in ISPM Supf and application of the concept of official control for q RNQPs are set out in ISPM 16:2002; these st

1. Intended Use and Official Cont

Further understanding of certain terms the finition RNQP may be important for the application of this standard.

1.1 Intended use

The intended use of p its for planting may ve :

- growing for at pr Action of other commodity classes (e.g. fruits, cut flowers, wood, grain)
- increasi me nu fr of thr alants for planting (e.g. tubers, cuttings, seeds, rhizomes)
- to ryain p nted (namentals); this includes plants that are intended to be used for nity, ae detic or otmer use.
Where the ded use is to increase the number of the same plants for planting, this may include the production of ferent classes of plants for planting within a certification scheme, such as for plant breeding or for ther propagation. As part of a PRA for RNQPs, such a differentiation may be especially relevant in determining damage thresholds and pest risk management options. Distinctions based on these classes should be technically justified.

Distinctions may also be made between commercial use (involving a sale or intention to sell) and noncommercial use (not involving a sale and limited to a low number of plants for planting for private use), where such a distinction is technically justified.

1.2 Official control

"Regulated" in the definition of an RNQP refers to official control. RNQPs are subject to official control in the form of phytosanitary measures for their suppression in the specified plants for planting (see section 3.1.4 of ISPM 16:2002).

Principles and criteria relevant for the interpretation and application of the concept of official control for regulated pests are:

- non-discrimination
- transparency
- technical justification
- enforcement
- mandatory nature
- area of application
- NPPO authority and involvement.

An official control programme for RNQPs can be applied on a national, sub-national or local area basis (see ISPM 5 Supplement 1).

REQUIREMENTS

PEST RISK ANALYSIS FOR REGULATED NON-QU, YAN NE PESTS

In most cases, the following steps will be applied sequential a particular sequence. Pest risk assessment needs to be onl the circumstances. This standard allows a specifi PRA necessity, minimal impact, transparency, equivalen discrimination set out in ISPM 1:1995 as wel intel, (see ISPM 5 Supplement 1).

2. Stage 1: Initiation

The aim of the initiation stage is to id tify the pests of specified plants for planting that may be regulated as RNQPs and tha ould be asidered for risk analysis in relation to the intended use of the plants for planting in identrard area.

2.1 Initiation p its

The PRA process for K s may bitiated as a result of:

- ident catio of pla fo ranting that could act as a pathway for potential RNQPs
- tb dentifi con of a pust that could qualify as an RNQP
- the or revisur of phytosanitary policies and priorities, including phytosanitary elements of offı certification schemes.

2.1.1 PRA initiated by the identification of plants for planting that could act as a pathway for RNQPs

A requirement for a new or revised PRA for plants for planting may arise in situations such as:

- new species of plants for planting are considered for regulation
- a change in susceptibility or resistance of plants for planting to a pest is identified.

Pests likely to be associated with the plants for planting are listed using information from official sources, databases, scientific and other literature or expert consultation. It may be preferable to prioritize the list based on expert judgement. If no potential RNQPs are identified as likely to be associated with the plants for planting, the PRA may stop at this point.

2.1.2 PRA initiated by a pest

A requirement for a new or revised PRA on a pest associated with plants for planting may arise in situations such as:

- identification, through scientific research, of a new risk posed by a pest (e.g. there is a change in pest virulence, or an organism is demonstrated to be a pest vector)
- detection in the PRA area of the following situations:
. change in the prevalence or incidence of a pest
- change in pest status (e.g. a quarantine pest has become widely distributed, or is no longer regulated as a quarantine pest)
presence of a new pest, not appropriate for regulation as a quarantine pest.

2.1.3 PRA initiated by the review or revision of a phytosanitary p

A requirement for a new or revised PRA for RNQPs may occur due to P - concerns ising from situations such as:

- consideration of an official control programme (e.g. certificy on scheme) and the strength of measures to be applied to a pest to avoid unacce ole ec mic in, act of specified RNQP(s) in plants for planting in the PRA area
- in order to extend phytosanitary requirements to imp rt of pl for Anting that are already regulated in the PRA area
- the availability of a new system, process, plant rot could influence a previous decision (e.g, a new tment or loss of a treatment, or a new diagnostic method)
- a decision is taken to review phy sanitary res ation, requirements or operations (e.g. a decision is made to reclassify a guar tine pest as a RNQP)
- a proposal made by another co try, a region organization (RPPO) or by an international organization (FAO) is assessed
- a dispute arises on phy snitary m sures.

2.2 Identification the PRA areas

The PRA area shou se ide fied in order to define the area to which official control is or is intended to be applied and for informa n is needed.

2.3 In cmatio

Informatio ran ering ential element of all stages of PRA. It is important at the initiation stage in order to A fy the identity of the pest, its distribution, economic impact and association with the plants for plant Other information will be gathered as required to reach necessary decisions as the PRA continues.

The information for the PRA can come from various sources. The provision of official information on the situation of a pest is an obligation according to the IPPC (Article VIII.1(c)) and facilitated by the official contact points (Article VIII.2).

2.4 Review of previous PRAs

Before performing a new PRA, a check should be made as to whether the plants for planting have, or the pest has, been subject to the PRA process. PRAs for other purposes, such as for quarantine pests, may provide useful information. If there is a previous PRA for an RNQP, its validity should be verified taking into account that circumstances may have changed.

2.5 Conclusion of initiation

At the end of the initiation phase the pests associated with the plants for planting that are identified as potential RNQPs are subjected to the next phase of the PRA process.

3. Stage 2: Pest Risk Assessment

The process for pest risk assessment can be divided into three interrelated steps:

- pest categorization
- assessment of the plants for planting as the main source of pest infestation
- assessment of economic impacts associated with the intended use of the plants for planting.

3.1 Pest categorization

At the outset, it may not be clear which pest(s) identified in Stage categorization process examines for each pest individually whether the crite in the defi tion for an RNQP are met.

During the initiation stage a pest or a list of pests has been ident a for C gorizath and further risk assessment. The opportunity to eliminate an organism or rgan nom coplideration before indepth examination is undertaken is a valuable characteristic

An advantage of pest categorization is that it can be ve r
should be sufficient to carry out the categorization adeq te

3.1.1 Elements for categorization

The categorization of a pest as a potential elements:

- identity of the pest, host plant, pa pronsideration and the intended use
- association of the pest with the pla sor planting and the effect on their intended use
- pest presence and ry ylatory
- indication of ecy mic impact(s) on pest on the intended use of the plants for planting.
3.1.1.1 Identity of ast, hos plant, part of plant under consideration and the

The folle ang sho d be cleat defined:
JQP in speci d plants for planting includes the following the cà orizati process.
h little evicu ce. However, the evidence

- the ent orturan
- the hos lant that is regulated or potentially to be regulated
- the plant \quad (s) under consideration (cuttings, bulbs, seeds, plants in tissue culture, rhizomes etc.)
- the intended use.

This is to make sure that the analysis is performed on distinct pests and hosts, and that the biological information used is relevant for the pest, the host plant and intended use under consideration.

For the pest, the taxonomic unit is generally the species. The use of a higher or lower taxonomic level should be supported by a scientifically sound rationale. In the case of levels below the species (e.g. race), this should include evidence demonstrating that factors such as difference in virulence, host range or vector relationships are significant enough to affect the phytosanitary status.

Also for the host, the taxonomic unit is generally the species. The use of a higher or lower taxonomic level should be supported by a scientifically sound rationale. In the case of levels below the species
(e.g. variety), there should be evidence demonstrating that factors such as difference in host susceptibility or resistance are significant enough to affect the phytosanitary status. Taxa for plants for planting above the species level (genera) or unidentified species of known genera should not be used unless all species in the genus are being evaluated for the same intended use.

3.1.1.2 Association of the pest with the plants for planting and the effect on their intended use

The pest should be categorized taking into account its association with the plants for planting and the effect on the intended use. Where a PRA is initiated by a pest, more than one host may have been identified. Each host species and the plant part under consideration for official control should be assessed separately.

If it is clear from the categorization that the pest is not associated with the pl planting or the plant part under consideration or does not affect the intended use of those p p this point.

3.1.1.3 Pest presence and regulatory status

If the pest is present and if it is under official control (or being nside for offical control) in the PRA area, the pest may meet the criteria for an RNQP and th PRA Ass may Antinue.
If the pest is not present in the PRA area or is not under offi al control rea area with respect to the identified plants for planting with the same in sed not expected to be under official control in the near future, the PRA process may stop at

3.1.1.4 Indication of economic impac of the f_{t} on he intended use of the plants for planting
 There should be clear indications that ep econses and impact on the intended use of the plants for planting (see ISPM 5 Supple ent 2 es the understanding of potential economic

 importance and related termsIf the pest does not caus an econonir ind
ct, according to the information available, or there is no information on econor impacts, the PRA nay stop at this point.

3.1.2 Conclusion on catege ration

If it has ber aeter ined th sest has the potential to be an RNQP, that is:

- $\quad \mathrm{p}$ (s for p^{\prime} Ating are aypathway, and
- it ma se unacceptable economic impact, and
- it is pre t in the PRA area, and
- it is or is en, cted to be under official control with respect to the specified plants for planting, the PRA process should continue. If a pest does not fulfil all the criteria for an RNQP, the PRA process may stop.

3.2 Assessment of the plants for planting as the main source of pest infestation

Because the potential RNQP is present in the PRA area, it is necessary to determine whether plants for planting are the main source of pest infestation of those plants or not. In order to do this, all sources of infestation should be evaluated and the results presented in the PRA.

The evaluation of all the sources of infestation is based on the:

- life cycle of the pest and host, pest epidemiology and sources of pest infestation
- determination of the relative economic impact of the sources of pest infestation.

In the analysis of the main source of pest infestation, consideration should be given to conditions in the PRA area and the influence of official control.

3.2.1 Life cycle of the pest and the host, pest epidemiology and sources of pest infestation

The aim of this part of the assessment is to evaluate the relationship between the pest and the plants for planting, and to identify all the other sources of pest infestation.

The identification of all the other sources of infestation is performed through the analysis of the pest and host life cycles. Different sources or pathways of pest infestation may include:

- soil
- water
- air
- other plants or plant products
- vectors of the pest
- contaminated machinery or modes of transport
- by-products or waste.

Pest infestation and spread may occur as a result of natural waterways), human action or other means from these sourc pathways should be examined.

3.2.2 Determination of the relative economic imp

The aim of this part of the assessment is to with the plants for planting relative to the 0 use of those plants. Information from sectiq

The evaluation will address the impo nce the pe infestation in the plants for planting on the epidemiology of the pest. The evalua in will arso address the contribution of other sources of infestation to the developme the pe and its effect on the intended use. The importance of all these sources may be infly Aced by tors uch as:

- the number of \quad (iife cycles on the mants for planting (e.g. monocyclic or polycyclic pests)
- reproductive logy he pest
- pathway efficien acludin hechanisms of dispersal and dispersal rate
- secon aty in statio ad ansmission from the plants for planting to other plants
- cl atologi Afactors
- cult actices, pre- and post-harvest
- soil typ
- the suscep lity of the plants (e.g. young plant stages could be more or less susceptible to different pests; host resistance/susceptibility)
- presence of vectors
- presence of natural enemies and/or antagonists
- presence of other susceptible hosts
- pest prevalence in the PRA area
- impact or potential impact of the official control applied in the PRA area.

The different types and rates of pest transmission from the initial infestation in the plants for planting (seed to seed, seed to plant, plant to plant, within plant) may be important factors to consider. Their importance may depend on the intended use of the plants for planting and should be assessed
accordingly. For example the same initial pest infestation may have significantly different impacts in/on seed for further propagation or plants for planting intended to remain planted.

Other factors may influence the evaluation of the plants for planting as the main source of infestation as compared to other sources. These may include pest survival and controls during production, transport or storage of the plants.

3.2.3 Conclusion of the assessment of the plants for planting as the main source of pest infestation

Pests that are mainly transmitted by the plants for planting and which affect the intended use of those plants are subjected to the next stage of the risk assessment to establish whether there are unacceptable economic impacts.
Where plants for planting are found not to be the main source of infestation, point. In cases where other sources of infestation are also relevant their co the intended use of the plants for planting should be evaluated.

3.3 Assessment of economic impacts on the intended

Requirements described in this step indicate the informa determine if there are unacceptable economic impacts. Ecc analysed for the development of official control programm the same intended use. The validity of any data sho be may have changed.

Wherever appropriate, quantitative data Qualitative data such as relative productio may also be used. The economic impact r may also be used. The economic impact r nlting from
use of the plants for planting and this may vary d
on wi to co luct an analysis to omic il cts m have previously been for the plants for planting with noked as circumstances and information 1 ,
nonetary values should be obtained. els Defore and after infestation by the pest e pest may vary depending on the intended

In cases where there is more than one urce of mirestation, the economic impact resulting from the pest on the plants for plant hould b demonstrated to be the main source of the unacceptable economic impact.

3.3.1 Pest effects

As the pest is impact in at a. SC tifi ata, regulatory and other information from the national and internatir al liter re shoul be consulted and documented as appropriate. Most of the effects consider duri omic analysis will be direct effects on the plants for planting and their intended us

Relevant factors determining economic impacts include:

- reduction of quantity of marketable yield (e.g. reduction in yield)
- reduction of quality (e.g. reduced sugar content in grapes for wine, downgrading of marketed product)
- extra costs of pest control (e.g. roguing, pesticide application)
- extra costs of harvesting and grading (e.g. culling)
- \quad costs of replanting (e.g. due to loss of longevity of plants)
- loss due to the necessity of growing substitute crops (e.g. due to need to plant lower yielding resistant varieties of the same crop or different crops).

In particular cases, pest effects on other host plants at the place of production may be considered relevant factors. For example, some varieties or species of host plants may not be seriously affected by
an infestation of the assessed pest. However, the planting of such an infested host plant may have a major effect on the more susceptible hosts at places of production in the PRA area. In such cases the assessment of the consequences of the intended use of those plants may include all relevant host plants grown at the place of production.

In some cases, economic consequences may only become apparent after a long period of time (e.g. a degenerative disease in a perennial crop, a pest with a long-lived resting stage). Furthermore, the infestation in the plants may result in contamination of places of production with a consequential impact on future crops. In such cases the consequences on intended use may extend beyond the first production cycle.

Pest consequences such as impacts on market access or environmental health are not considered relevant factors in determining economic impacts for RNQPs. The ability to act as a vector for other pests may nevertheless be a relevant factor.

3.3.2 Infestation and damage thresholds in relation to the intend use

Data, either quantitative or qualitative, should be available regardin he leven damar of the pest on the intended use of the plants for planting for all relevant sour of infegtation PRA area. In cases where plants for planting are the only source of infesta n, the data prowde the basis for determining infestation thresholds and the resultant damag thre in rel on to the economic impact on the intended use.

Where other sources of infestation are also relevan their should be assessed. The proportion of damage caused Δ, compared with the proportion from other damage thresholds in relation to the intende

Determination of infestation thresholds wi assist in the lentification of appropriate tolerance levels at the pest risk management stage (see ectid 4.4).

In cases where there is a lack of quantit ve information on pest damage caused by the initial level of pest infestation in the plants planting, xpert judgement could be used on the basis of information obtained in sections 3.2.1 d 3.2.2

3.3.3 Analysis of onomi consequences

As determined ahove, of the ρ cts of a pest, e.g. damage, will be of a commercial nature within the country nes effec sho be identified and quantified. It may be useful to consider the negative lect of est-indut changes to producer profits that result from changes in production costs,

3.3.3.1 Anal, cal techniques

There are analytical techniques that can be used in consultation with experts in economics to make a more detailed analysis of the economic effects of an RNQP. These should incorporate all of the effects that have been identified. These techniques (see section 2.3.2.3 of ISPM 11:2004) may include:

- Partial budgeting. This will be adequate, if the economic effects induced by the action of the pest to producer profits are generally limited to producers and are considered to be relatively minor.
- Partial equilibrium. This is recommended if, under point 3.3.3, there is a significant change in producer profits, or if there is a significant change in consumer demand. Partial equilibrium analysis is necessary to measure welfare changes, or the net changes arising from the pest impacts on producers and consumers.

Data on the economic impact of the pest on the intended use of the plants for planting should be available for the PRA area and an economic analysis may be available. For some effects of the pests there may be uncertainties or variability in the data and/or only qualitative information may be available. Areas of uncertainty and variability should be explained in the PRA.

The use of certain analytical techniques is often limited by the lack of data, by uncertainties in the data, and by the fact that for certain effects only qualitative information can be obtained. If quantitative measurement of the economic consequences is not feasible, qualitative information about the consequences may be provided. An explanation of how this information has been incorporated into decisions should also be provided.

3.3.4 Conclusion of the assessment of economic consequences

The output of the assessment of economic consequences described in this step normally be in terms of a monetary value. The economic consequences can also be expres qualita rely (such as relative profit before and after infestation) or using quantitative measu without mo tary terms (such as tonnes of yield). Sources of information, assumptions and retho of analys should be clearly specified. An assessment will need to be made as to wheth he econd ic cor quences are acceptable or unacceptable. If the economic consequences are co dered a teptab . little damage or damage is largely from sources other than the plants for plant ther fe PRA may stop.

3.4 Degree of uncertainty

Estimation of economic impact and the relative in tan uncertainties. It is important to document the areas of un assessment, and to indicate where expert jud and may also be useful for identifying and

3.5 Conclusion of the pest risk

As a result of the pest risk assessment, being the main source of insestation o the pest and a corresponding quantitative or qualitative estimate of the economic gnsequa been obtained and documented, or an overall rating could have been assigned.
Measures are not j fied if risk is considered acceptable or should be accepted because it is not manageable through contry for example, natural spread from other sources of infestation). Countries mpide than ar oriate level of monitoring or audit is maintained to ensure that future char es in t pest ridentified.
Where ph spare been identified as the main source of infestation for a pest and an unacceptablu onomic impact on the intended use of these plants has been demonstrated, pest risk management m be considered as appropriate (Stage 3). These evaluations, together with associated uncertainties, are lized in the pest risk management stage of the PRA.

4. Stage 3: Pest Risk Management

The conclusions from pest risk assessment are used to decide whether risk management is required and the strength of measures to be used.

If the plants for planting are assessed as being the main source of infestation of the pests and the economic impact on the intended use of those plants is found to be unacceptable (Stage 2), then risk management (Stage 3) is used to identify possible phytosanitary measures with the aim of suppression and thereby will reduce the risk to, or below, an acceptable level.

The most commonly used option for pest risk management for an RNQP is the establishment of measures to achieve an appropriate pest tolerance level. The same tolerance level should be applied for domestic production and import requirements (see section 6.3 of ISPM 16:2002).

4.1 Technical information required

The decisions to be made in the pest risk management process will be based on the information collected during the preceding stages of PRA, particularly the biological information. This information will comprise:

- reasons for initiating the process
- importance of the plants for planting as a source of the RNQP
- evaluation of the economic consequences in the PRA area.

4.2 Level and acceptability of risk

In implementing the principle of managed risk, countries should decide w for them.

The acceptable level of risk may be expressed in a number of we such

- reference to the existing acceptable level of risk for do hestio action
- indexed to estimated economic losses
- \quad expressed on a scale of risk tolerance
- compared with the level of risk accepted by other

4.3 Factors to be taken into account risk management options

Appropriate measures should be chos bas on their lectiveness in limiting the economic impact of the pest on the intended use of the p ts form. The choice should be based on the following considerations, which include several o he principles of plant quarantine as related to international trade (ISPM 1:1993):

- Phytosanitary mp ares shown cost-effective and feasible. The measure should not be more costly th the ecc ${ }^{\text {mic impact. }}$
- Principle of " vimr mpact" Measures should not be more trade restrictive than necessary.
- Assessm of ex phyt anitary requirements. No additional measures should be imposed if ey ing m sures ective.
- $\quad P$ ciple "oouivalence". If different phytosanitary measures with the same effect are iden \dot{c}_{e} they stroud be accepted as alternatives.
- Princip of "non-discrimination". Phytosanitary measures in relation to import should not be more stril, ot than those applied within the PRA area. Phytosanitary measures should not discriminate between exporting countries of the same phytosanitary status.

4.3.1 Non-discrimination

There should be consistency between import and domestic requirements for a defined pest (see ISPM 5 Supplement 1):

- Import requirements should not be more stringent than domestic requirements.
- Domestic requirements should enter into force before or at the same time as import requirements.
- Domestic and import requirements should be the same or have an equivalent effect.
- Mandatory elements of domestic and import requirements should be the same.
- The intensity of inspection of imported consignments should be the same as equivalent processes in domestic control programmes.
- In the case of non-compliance, the same or equivalent actions should be taken on imported consignments as are taken domestically.
- If a tolerance is applied within a national programme, the same tolerance should be applied to equivalent imported material, e.g. same class within a certification scheme or same stage of development. In particular, if no action is taken in the national official control programme because the infestation level does not exceed a particular level, then no action should be taken for an imported consignment if its infestation level does not exceed that same level. At entry, compliance with import tolerance may be determined by inspection or testing. The tolerance for domestic consignments should be determined at the last or most appropriate point where official control is applied.
- If downgrading or reclassifying is permitted within a national offic programme, similar options should be available for imported consignments.

In cases where countries have, or are considering, import requirenants RNQPs i plants for planting that are not produced domestically, phytosanitary measures ould be to nicall ustified.
The measures should be as precise as possible concerning the s
ies of ants for p ranting (including different classes, for example within a certification scheme) and a cended to prevent barriers to trade such as by limiting the import of products where thi

4.4 Tolerances

For RNQPs, the establishment of appropriate level. These tolerances should be based on lever pesi festation (the infestation threshold) in plants for planting that result in an unacc table econo ic impact. Tolerances are indicators that, if exceeded, are likely to result in unaçppta e impacts or plants for planting. If infestation thresholds have been determined during the ris asse vent stag these should be considered in establishing appropriate tolerances. Tolerance leve shout account appropriate scientific information
including:

- intended use of the ants rontin
- biology, in parti ar epidemiologit haracteristics, of the pest
- susceptibility the hg
- sampling proced (includi confidence intervals), detection methods (with estimates of the
- precis re, iabill of id dication
rest level and the economic losses
- clin te curn actices in PRA area.

The above int vation may be derived through reliable research and also through the following:

- experience ith official control programmes within the country for the plants for planting concerned
- \quad experience from certification schemes for the plants for planting
- \quad history of imports of the plants for planting
- data regarding interactions between the plant, the pest and the growing conditions.

4.4.1 Zero tolerance

Zero tolerance is not likely to be a general requirement. A zero tolerance may be technically justified in situations or combination of situations such as:

- where plants for planting are the only source of pest infestation in relation to the intended use of those plants and any level of pest infestation would result in an unacceptable economic impact
(e.g. nuclear stock for further propagation, or a virulent degenerative disease where the intended use is further propagation)
- the pest fulfils the defining criteria of an RNQP and an official control programme is in place requiring pest freedom in plants for planting (zero tolerance) for the same intended use for all domestic places of production or production sites. Similar requirements could be used as described in ISPM 10:1999.

4.4.2 Selection of an appropriate tolerance level

Based on the above analysis, a tolerance level should be selected which aims to avoid an unacceptable economic impact as assessed under 3.3.4.

4.5 Options to achieve the required tolerance levels

There are a number of options that may achieve the required tolerance. Cert cation sch es are often useful for attaining the required tolerance and may include elements that be relevant r all of the management options. Mutual recognition of certification schemes may acilita trade of althy plant material. However some aspects of certification schemes (e.g. va cal purity) no elevant (see section 6.2 of ISPM 16:2002).

Management options may consist of a combination of tr or Sampling, testing and inspection for the required tolerance may be var or all the management options.

These options may be applied to:

- area of production
- place of production
- parent stock
- consignment of plants for planti

Section 3.4 of ISPM 11:2004 also prow es information on the identification and selection of risk management options.

4.5.1 Area of prod ction

The following options applig to the area of production of the plants for planting:

- buffer pes (e.g. rivers, mountain ranges, urban areas)
- monitoring vurvey.

4.5.2 Place of production

The following options may be applied to the place of production of the plants for planting to achieve a required tolerance:

- isolation (place or time)
- \quad pest free place of production or pest free production site (see ISPM 10:1999)
- integrated pest management
- cultural practices (e.g. roguing, pest and vector control, hygiene, preceding crop, previous treatment)
- treatments.

4.5.3 Parent stock

The following options may be applied to the parent stock of the plants for planting to achieve a required tolerance:

- treatment
- use of resistant varieties
- use of healthy planting material
- sorting and roguing
- \quad selection of propagating material.

4.5.4 Consignment of plants for planting

The following options may be applied to consignment of plants for planting a required tolerance:

- treatment
- conditions of preparation and handling (e.g. storage, packaging (at trans, at condiy ns)
- sorting, roguing, reclassification.

4.6 Verification of the tolerance levels

 Inspection, sampling and testing might be needed to con tolerance level.
4.7 Conclusion of pest risk managem

The conclusion of the risk management sta

- an appropriate tolerance level
- management options to achieve

The result of the process is a decision on thether to accept the economic impact that could be caused by the pest. If there are rigl mor ment ptions that are acceptable, these options form the basis of phytosanitary regulation or requireme
Measures for RNQ should Ay concern the plants for planting. Therefore only management options relating to consignn an plant for planting can be selected and included in phytosanitary requirements ma ement ptions such as for the parent stock, place of production or area of production aay by includ - phytosanitary requirements, but should be related to the tolerance which require to be acmeved. Measures proposed as equivalent should be evaluated. The informatio el to urelicacy of options which are proposed as alternatives should be provided on request to interested parties (both domestic industry as well as other contracting parties) in complying with requirements. Confirmation that the tolerance has been achieved does not imply testing of all consignments, but testing or inspection may be used as an audit, as appropriate.

5. Monitoring and Review of Phytosanitary Measures

The principle of "modification" states: "As conditions change, and as new facts become available, phytosanitary measures shall be modified promptly, either by inclusion of prohibitions, restrictions or requirements necessary for their success, or by removal of those found to be unnecessary" (ISPM 1:1993).

Thus, the implementation of particular phytosanitary measures should not be considered to be permanent. After application, the success of the measures in achieving their aim should be determined by monitoring. This may be achieved by monitoring the plants for planting at appropriate times and places and/or damage levels (economic impact). The information supporting the pest risk analysis
should be periodically reviewed to ensure that any new information that becomes available does not invalidate the decision taken.

6. Documentation of Pest Risk Analysis

The IPPC (Article VII.2(c)) and the principle of "transparency" (ISPM 1:1993) require that contracting parties should, on request, make available the rationale for phytosanitary requirements. The whole process from initiation to pest risk management should be sufficiently documented so that when a request for the rationale for measures is received, or a dispute arises, or when measures are reviewed, the sources of information and rationale used in reaching the management decision can be clearly demonstrated.

The main elements of documentation are:

- purpose for the PRA
- pest, host, plants and/or parts or class of plants under consideratic pest list (if propriate), sources of infestation, the intended use, PRA area
- \quad sources of information
- categorized pest list
- conclusions of risk assessment
- risk management

