Multiple Uses of cactus Pear (*Opuntia ficusindica*) and threat of recent cochineal (*Dactylopius opuntiae*) outbreaks in the Mediterranean basin

Dr. Ali Nefzaoui Consultant, ICARDA a.nefzaoui@cgiar .org

CACTUSNET International Technical Co-operation Network on Cactus Pear

Outline

- **1.** Introduction: History, Astonishing plants...
- 2. How cacti can help developing marginal dry areas and combating desertification?
- **3.** Cactus: Multipurpose spp.
 - <mark>a.</mark> Fruit
 - **b.** Agri-food and nopalitos
 - c. Forage
 - d. Cosmetic and medicinal uses
- 4. Cochineal and Red Dye
- 5. The FAO-ICARDA International Technical Cooperation Network on Cactus (FAO-ICARDA Cactusnet)

Origin of cacti... dissemination

Desert Wisdom

Agaves and cacti with their substantial biomass productivities and their high WUE should be considered for the terrestrial sequestration of atmospheric CO2 in underexploited arid and semi-arid regions. Such regions are poorly suited to C3 and C4 crops without irrigation.

 ... Opuntia ficus indica can generate a carbon sequestration of 20 T DM (equivalent to 30 T CO2/ha/year) under sub-optimal growing conditions... DESERT WISDOM AGAVES and CACTI CO₂, Water, Climate Change

PARK S. NOBEL

Few statistics

Regions/countries	Area cultivated, (x 1000 ha)
Brazil	600
Other South American Countries	75
Mexico	230 + 3 M
Other North American countries	16
Tunisia	600
Algeria	150
Morocco	150
Italy	70
Total	1891 + ~ 3 M

The Cactaceae family

- About 1600 species, origin: native in America, but worldwide dissemination
- The most known is Opuntia genera; Opuntia ficus indica is cultivated in more than 20 countries
- It has been consumed by humans for more than 9000 years
- From 1998 to 2000: more than 600 researchers published over 1100 articles on Cacti

Registered commercial cultivars (50; 2007 Mexico)

REYNA *Opuntia albicarpa*

BURRONA Opuntia albicarpa

MILPA ALTA Opuntia ficus-indica

CRISTALINA Opuntia albicarpa

ROJO PELÓN *Opuntia ficus-indica*

R. SAN MARTÍN Opuntia megacantha

TORREOJA Opuntia megacantha

VILLANUEVA O. albicarpa

AMARILLA PLÁTANO Opuntia megacantha

MONTESA *O. megacantha*

ROJO VIGOR

Opuntia ficus-indica

PICO CHULO O. megacantha

GAVIA Opuntia albicarpa

Opuntia megacantha

NARANJÓN LEGÍTIMO

Opuntia albicarpa

Astonishing plants !

- **Ease of establishment** : ability to reproduce directly from pad to new plant. A low cost to establish and to maintain
- **Built in survival mechanism.** A drought tolerant and adaptable to a wide variety of soils and climates
- A long live plant, a producer of a large biomass, instant availability
- An evergreen : almost the only green plant in arid environment and prolonged drought
 - A multipurpose plant

Astonishing plants/ Easy to establish

Astonishing plants/ Survival mechanisms

- modified leaves
- xerophytism,
- ability to condense water (air)
- Sunken
- Close when T° /Light intensity rises
- Closed for the largest portion of the day

Limited evaporation :

- Covered with a layer of wax (cutin)
- thick epidermis

Astonishing plants/ Survival mechanisms

✓ Adapted root system :

shallow, fleshy, with horizontal root spreading (maxim depth of 30 cm, spreading 4 to 8 m)

✓ Xeromorphic characteristics enabling the plants to survive prolonged periods of drought

 ✓ Water absorbed through the roots is combined immediately with hydrophilic mucus (mucilage) from which the water evaporates very slowly

Cactus fixes CO2 as malic acid and releases O2 during the night to prevent water losses through transpiration

Astonishing plants/ CAM metabolism and WUE

	Photosyntheti c metabolism	Water use efficiency (kg of water/kg of DM)	
	C ₃	400-1000	
	C ₄	250-500	
ML AN	CAM	100	
KON	Adapted from Larcher (1986)		

Astonishing plants/ Long-life high yielding plant

Cactus (O.F.I. inermis) yield according to rainfall in Tunisia (adapted from Montjauze et le Houérou, 1965)

Increment of cactus productivity in experimental areas of NE Brazil in the last 40 years

Astonishing plants/ CAM metabolism and WUE

Camel of the plant kingdomFodder bankLiving fodder bank

Outline

- **1.** Introduction: History, Astonishing plants...
- 2. How cacti can help developing marginal dry areas and combating desertification?
- **3.** Cactus: Multipurpose spp.
 - <mark>a.</mark> Fruit
 - **b.** Agri-food and nopalitos
 - c. Forage
 - d. Cosmetic and medicinal uses
- **4.** Cochineal and Red Dye
- 5. The FAO-ICARDA International Technical Cooperation Network on Cactus (FAO-ICARDA Cactusnet)

How cacti can help developing marginal dry areas and combating desertification?

 Soil and water conservation
Rangeland and marginal land rehabilitation
Crop land management: agroforestry

Soil and Water conservation/ Controlling erosion in gullied areas & watersheds

Comparison of **soil losses** under different crops in semi-arid NE Brazil (Romulso et al., 2009) (tons/ha)

Crop type	Total soil losses
Bare soil	29.10
Cotton	10.91
Maize	5.94
Maize + beans	3.93
Opuntia ficus-indica	1.98
Perennial grass	0.03

O. Ficus-indica planted in countour hedges to control soil erosion

Soil retention: 100 tons ha⁻¹ year⁻¹

Rangeland and marginal land rehabilitation

Rangeland productivity increases from 100 FU to 1000 FU

Desert rehabilitation: Peru

Cropland management: Alley-cropping (Agroforestry)

1		
Treatment	straw+ grain (T/ha)	Grain (T/ha)
Cactus+ barley crop	6.648	2.232
Barley crop	4.24	0.824

Outline

- **1.** Introduction: History, Astonishing plants...
- 2. How cacti can help developing marginal dry areas and combating desertification?
- **3.** Cactus: Multipurpose spp.
 - a. Forage
 - <mark>b.</mark> Fruit
 - c. Agri-food and nopalitos
 - d. Cosmetic and medicinal uses
- 4. Cochineal and Red Dye
- 5. The FAO-ICARDA International Technical Cooperation Network on Cactus (FAO-ICARDA Cactusnet)

Cactus crop

Rangeland Combat improvement desertification

> Increase plant cover Carbon sequestration Livestock feeding Soil and water conservation Wildlife Food

Fruit & cladodes (natural products, high nutritional value) Agro-industries (juice, liquor, jellies, colorants)

Cash crop with high

value-added products

Cosmetics & medicinal uses

Multifunctionality of cactus crop

Cladodes: Nutrients characteristics

High contents in :

- Water (~ 90 %)
- Ash (~ 20 % DM)
- Ca (~ 6-8 % DM)
- Oxalates (8-13 % DM)
- Soluble sugars (10 % DM)
- Vitamin A
- DOM (d ~ 70 %)

Low contents in :

- CP (~ 4 % DM)
- Fiber (NDF < 40 % DM).</p>
- P (0.1-0.2 % DM)

Cactus cladodes: Feeding value/ Energy

F.U meat (/kg DM)

Mixing ingredients vs. separate ingredients (Pessoa et al., 2004 – Brazil)

Diet: 39 % cactus + 31 % sorghum silage + 30 % concentrate

Milk production

Opuntia in replacement of Bermuda grass (Tifton hay) -Dairy Cows (Cavalcanti, 2005 – Brazil)

Cactus helps solving watering problems in arid areas

Cactus as fodder/ Feeding fruits

Large amounts of fruits left on the field (over-ripe) Good source of sugars

Wasted fruits in feed blocks

LAMBs (Chermiti & Ferchichi, 2000)

Diets	Daily gain, g
Hay + barley grain	154
Hay + feed blocks (cactus fruit)	163

Cut & Carry Use of herbaceous plants ?

Cactus choppers

Tunisia

Tigray, Ethiopia

Wild population in Mexico

Intensive fodder production, Mexico

Feeding cactus pads improves meat quality : Positive effects of CLA

C18:3 in meat

Fruit production

Fruit production, Tunisia

Harvesting

Post harvest and packaging

packaging: a key for success

From wild to seedless fruits...

Agri-food: More than 50 products are marketed....

- Alcoholic beverages
- → Marmelades
- → Juice
- → Nectars
- → Candies
- └→ Frosen pulp

→ Candies
→ Marmelades
→ Flower
→ Juice
→ Brine

Nopalitos production & uses

Nopalitos cleaning

"Nopalitos" in brine and pickled "nopalitos"

Work shop in Chile

Nopalitos production in Hermosillo, Sonora, México (A. Rodríguez & L.C. Montoya, CIAD-México)

Pads & fruits: Food

FAO-TCP/ETH/2901

Training new consumers (Ethiopia)

Pads & fruits: Food

"El Bambu" Restaurant in La Havana, Cuba. Dishes based on cactus products

Purple cactus pear colorant

Nopalitos production & uses

Different presentations and trade marks of tender processed cladodes

Different presentations and trade marks of tender cladodes processed in vinegar (pickles)

Marmalades, juices, candies, etc.

Some commercial presentations of candies made with cactus fruit and tender cladodes

Some commercial presentations of marmalades, juices and sauces made with cactus fruit and tender cladodes

Sauces, beverages

Some commercial presentations and trade marks of beverages made with cactus fruit and tender cladodes

Candies

Figure 8. Some commercial presentations of candies made with cactus pear fruits and tender leaves (nopalitos).

NEUROPROTECTOR

CHOLESTEROL REDUCING ACTION

Scientific Research Concerning Medicinal Properties

HIGH-VALUE-ADDED CACTUS PRODUCTS

✓ NUTRACEUTICS

FUNCTIONAL FOODS

COSMETICS

Dehydrated Nopal

/erd

\mathcal{X} Poudre Nopale

Nopal powder

It can be used as food additive to take benefits from its functional properties

Prepared by solar dehydration from mature nopal pads.

US \$ 5-10/Kg

Nopal pills and capsules

FUNCTIONAL FOODS

Nopaltilla(TM) The Healthy Green Cactus Tortilla

ortilla

To a Healthier More Nutritious Lower Calorie Meal

made Of Prickly Pear Cactus

FUNCIONAL FOODS Healthy drinks and Juices

Cahill Prickly Pear Thirst Quencher Rich in Vitamin C, Flavonoids & Antioxidants 100% Natural

- Protect against premature aging
- Reduce inflammation
- Promote optimal cellular health
- · Detoxify the body

CACTUS FRUIT FUNCTIONAL PRODUCTS

DRIED FLOWERS FOR MEDICINAL TEAS OR INFUSIONS

Maceration of dried flowers in argan oil

SEED MEAL

- ✓ Opuntia ficus indica seed meal contains 16.5% protein and 48% fiber.
- The flour is used as a food supplement thanks to its high nutritional value, due to its richness in essential fatty acids, sterols and vitamin E.
- This powder is also used in cosmetics as exfoliant, anti-aging and antioxidant. It is also used to produce a precious maceration.

COSMETIC PRODUCTS

Cactus seed oil 100 % organic from morocco

anti-wrinkle cactus seeds oil

Seed Oil

10 mL x 29 €

TVHOL

Car.

nie be pépini sue be Barba

LOON PLATE

350 € / L

Hutte de graine

Aguas de tartario

Soap and Shampoos

les maladies de la peau. -RAM. C.L.M SIdI II

Cosmetics: creams and make up

Carminic acid from cochineals

Cooperative for cactus processing, beekeeper union and green technology = will be presented in a short movie

Filet de raquettes de figuier de Barbarie de Guelmim

gréciente, trial de raquette, sel, eau «Produit 1005, nou
Fruit processing unit =

- Taking advantage of 60,000 Ha of plantation close to Guelmim
- Almost six month of fruit production (Aissa & Moussa)
- · Spineless fruit sold in supermarket, nationally and internationally

Futuristic vision = the cactopole

Industrial quarter devoted to cactus transformation on 25 Ha Close to the national road, close to Guelmim, close to the provincial water treatment plant

•

Outline

- **1.** Introduction: History, Astonishing plants...
- 2. How cacti can help developing marginal dry areas and combating desertification?
- **3.** Cactus: Multipurpose spp.
 - a. Forage
 - <mark>b.</mark> Fruit
 - c. Agri-food and nopalitos
 - d. Cosmetic and medicinal uses

4. Cochineal and Red Dye

5. The FAO-ICARDA International Technical Cooperation Network on Cactus (FAO-ICARDA Cactusnet)

Cochineal and Red Dye

The good and the bad cochineal

Dactylopius Costa (Hemiptera: Dactylopiidae)

- D. confusus Cockerell
- D. opuntiae Cockerell
- D. tomentosus Lamarck
- D. coccus Costa
- D. ceylonicus Green
- D. austrinus De Lotto
- D. confertus De Lotto
- D. salmianus De Lotto
- D. zimmermanni De Lotto
- D. bassi Targioni Tozzetti

Feeding exclusively on cacti ~80 species hosts worldwide 22 in Mexico.

Dactylopius opuntiae

Chromosomes Dactylopius coccus Dactylopius opuntiae 2n = 16 2n = 10 Wild cochineal **Fine cochineal** TREX+

Paracas, Peru (millenary)

Cactus plantation for cochineal. San Mateo, Guatemala (1875) Sidney D. Markman

Opuntia and Dactylopius production and marketing

Comparison on the processing of the second state of the processing of the second state of the second st

We have determined of the opticality, if any optical sequences of the opticality of the opticality of the opticality of the opticality of the optical sequences of the op

Tribute to Aztecs, 394 comunities Mixtec/4,400 kg/year

Dactylopius coccus

Market: Local, France, England, Italy, Japan, United States and Argentina

Cosmetics

Medicines

Textiles

 Antibacterial, antiviral, and insecticidal

FAO-TCP/ETH/2901 (A)/ Ethiopia

Man, cactus and cochineal

CACTUS PEAR (*Opuntia ficus-indica*): PRODUCTION AND UTILIZATION H. G. Zimmermann (team leader)

Tigray: +355 000 ha with cactus pear

Cochineal nursery ca. 40.000 plants

Infestation:25 ha

Good future! Or Nightmare

Considerable time was spent to look for the wild cochineal, *Dactylopius opuntiae,* which could have arrived as a contaminant with the original

consignment.

Dactylopius opuntiae

Dactylopius opuntiae

Total destruction achieved in very short time

Main pathways of dispersal of cactus insect pests

1. Accidental

- Climatic events (wind)
- Birds, livestock, trade and transit
- 2. Human induced
- Trade (mainly the nursery trade)
- Biological control of cactus weed
- Research
- Illegal cactus collectors

Main pathways of dispersal of cactus insect pests

Trade and transit of infected material

Human induced

 Trade (mainly the nursery trade)
Dactylopius spp. and Cactoblastis cactorum are very easily overlooked and can spread very effectively through nursery stock.

Human induced (cont.)

Biological control of cactus weeds

- 23 cactus insects have been exported from the Americas for biological control of cactus invaders outside the Americas (example: Australia, South Africa). Some have become serious pests including
 ✓ Cactoblastis cactorum
 - Dactylopius opuntia

The spread of *Cactoblastis cactorum* for biological control

....and its accidental spread towards Mexico and the USA

The spread of *Cactoblastis cactorum* towards Pernambuco

Cactoblastis cactorum

Spread of Dactylopius opuntiae in South America

Dactylopius opuntiae: Every country should manage the situation locally But global action must be considered

Human induced (cont.)

Research

- **1.** Taxonomic confusion
- 2. Inadequate quarantine procedures when introducing vegetative material

Research: Taxonomic confusion within Dactylopius (cochineals)

 India 1795: Total destruction of *O. monacantha* Madagascar 1924: Total destruction of the "Malagasy Cactus"?
Brazil 1998: Known as the "carmine cochineal" ??? Now a serious pest on cultivated cactus pear.

What to do?

Inspired from the Brazilian experience

- **1.** Initial action: To study its biology and control
- **2.** Emergency action plan
- **3.** Agroecological research
- 4. Informative action: Elaboration of leaflets and of control manual illustrated with pictures
- **5.** Training: extensionists and producers
- 6. Proposals for the management of D. Opuntiae
 - Exclusion
 - Erradication
 - Therapy
 - Escape

What to do? Inspired from the Brazilian experience

• Exclusion:

✓ Keep the cochineal away

Erradication:

- ✓ To destroy the first clusters of infested plants
- To collect fallen cladodes
- To burn abandoned cultivations

Therapy:

To spray with alternative products, with no hurry

Escape:

✓ Resistant variety: Nopalea cochenillifera

What to do? Inspired from the Brazilian experience

TREATMENTS	EFFICIENCY
MINERAL OIL + SALT	30%
QUEROSENE + SALT	30%
HOUSEHOLD BLEACH + DETERGENT	90%
METHYL PARATHION	90%
METHYL PARATHION + DETERGENT	90%
ENDOSULFAN + DETERGENT	90%
DELTAMETHRIN + DETERGENT	80%

What to do? Inspired from the Brazilian experience

EFFECT OF PRODUCTS FOR THE CONTROL OF COCHINEAL D. OPUNTIAE ON CACTUS PEAR TREATMENTS: Product efficiency (%) **1. CONTROL** $\mathbf{0}$ 2. POWDERED SOAP 2% 100**3. NEUTRAL DETERGENT 5%** 1004. NEUTRAL DETERGENT 5% + HOUSEHOLD 100BLEACH 5% 5. SULPHONIC ACID 2% 1006. LAURYL 5% 100 7. LAURYL 5% + CHLORINE 0.5% 100

Suggested solution

✓ Powdered soap: 400 g/20 L

✓ Detergent: 1 L/ 20 L

✓ Close (20 cm) on both sides

Resistant variety: *Nopalea cochenillifera*

Biological control: Natural enemies

FAO-ICARDA INTERNATIONAL TECHNICAL COOPERATION NETWORK ON CACTUS www.cactusnet.org

FAO-ICARDA CACTUSNET

Creation of FAO- CACTUSNET: 1st August 1993, Mexico **Objectives:**

- To collect and disseminate information on production and planting, trade and markets, crop research, postharvest and processing and cochineal;
- To cooperate in the collection, conservation, exchange, evaluation and utilization of germplasm and monitor progress and usefulness of such exchanges.
- To promote the ecological and social benefits of cactus pear;
- To develop new food and carminic acid uses;
- To exchange expertise and organize training courses, workshops and meetings of experts in order to improve technical capability in the individual institutions.

Participating Countries

Angola, Algeria, Argentina, Bolivia, Brazil, Chile, China, Cuba, Egypt, Eritrea, Ethiopia, Germany, Greece, India, Iraq, Iran, Israel, Italy, Jordan, Mauritanian, Morocco, Mexico, Mozambique Pakistan, Peru, South Africa, Syria, Tunisia, Turkey, United States, Zimbabwe.

Highlights Network activities Congresses / General Meetings + many country workshops

- 1st August 1993, Mexico Creation of CACTUSNET
- 2nd December 1994, Italy
- 3rd January 1996, South Africa
- 4rd October 2000, Tunisia
- 5th August 2004, Mexico
- 6th October 2007, Brazil
- 7th October 2010, Agadir (Morocco)
- 8th October 2013, Palermo, Italy
- 9th March 2017, Chile

Highlights Network activities

Publications : Technical reports, Newsletter,...

