PT 22: Sulphuryl fluoride fumigation treatment for insects in debarked wood

Produced by the Secretariat of the International Plant Protection Convention (IPPC)
This page is intentionally left blank
ISPM 28
Phytosanitary treatments for regulated pests

PT 22: Sulphuryl fluoride fumigation treatment for insects in debarked wood

Adopted 2017; published 2017

Scope of the treatment
This treatment describes the fumigation of debarked wood using sulphuryl fluoride to reduce the risk of introduction and spread of insect pests.

Treatment description
Name of treatment
Sulphuryl fluoride fumigation treatment for insects in debarked wood

Active ingredient
Sulphuryl fluoride (also known as sulfuryl fluoride, sulphur dioxide difluoride, sulphuryl difluoride)

Treatment type
Fumigation

Target pests
Wood-borne life stages of insects, including Anoplophora glabripennis (Motschulsky, 1853) (Coleoptera: Cerambycidae), Anobium punctatum (De Geer, 1774) (Coleoptera: Anobiidae) and Arhopalus tristis (Fabricius, 1787) (Coleoptera: Cerambycidae)

Target regulated articles
Debarked wood not exceeding 20 cm in cross-section at its smallest dimension and 75% moisture content (dry basis)

Treatment schedule
Fumigation of debarked wood not exceeding 20 cm in cross-section at its smallest dimension and 75% moisture content (dry basis) in accordance with a schedule that achieves the minimum concentration–time product (CT) within a single 24 hour period at the temperature and final residual concentration specified in Table 1.

1 The scope of phytosanitary treatments does not include issues related to pesticide registration or other domestic requirements for contracting parties’ approval of treatments. Treatments adopted by the Commission on Phytosanitary Measures may not provide information on specific effects on human health or food safety, which should be addressed using domestic procedures before contracting parties approve a treatment. In addition, potential effects of treatments on product quality are considered for some host commodities before their international adoption. However, evaluation of any effects of a treatment on the quality of commodities may require additional consideration. There is no obligation for a contracting party to approve, register or adopt the treatments for use in its territory.
Table 1. Minimum concentration–time product (CT) within a single 24 hour period for debarked wood fumigated with sulphuryl fluoride

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Minimum required CT (g.h/m^3)</th>
<th>Minimum concentration (g/m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 °C or above</td>
<td>3 200</td>
<td>93</td>
</tr>
<tr>
<td>20 °C or above</td>
<td>2 300</td>
<td>67</td>
</tr>
<tr>
<td>25 °C or above</td>
<td>1 500</td>
<td>44</td>
</tr>
<tr>
<td>30 °C or above</td>
<td>1 400</td>
<td>41</td>
</tr>
</tbody>
</table>

This treatment schedule is effective against all wood-borne life stages of insect pests. There is 95% confidence that the treatment according to this schedule achieves the following levels of mortality for the wood-borne life stages of the following insect pests:

- *Anoplophora glabripennis* (larvae and pupae) to not less than 99.99683%²
- *Anobium punctatum* (all life stages) to not less than 99.7462%
- *Arhopalus tristis* (all life stages) to not less than 99%.

The measured temperature of the product (including at the wood core) or the ambient air (whichever is lower) is used to calculate the sulphuryl fluoride dose and must be at least 15 °C throughout the duration of the treatment.

Other relevant information

One example of a schedule that achieves the minimum required CT for debarked wood treated with sulphuryl fluoride is shown in Table 2.

Table 2. Example of a treatment schedule that achieves the minimum required concentration–time product (CT) for debarked wood treated with sulphuryl fluoride (SF)

<table>
<thead>
<tr>
<th>Minimum temperature during treatment</th>
<th>Minimum required CT (g.h/m^3)</th>
<th>SF dose² (g/m²)</th>
<th>Minimum concentration (g/m^3) at hour:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>15 °C or above</td>
<td>3 200</td>
<td>183</td>
<td>188</td>
</tr>
<tr>
<td>20 °C or above</td>
<td>2 300</td>
<td>131</td>
<td>136</td>
</tr>
<tr>
<td>25 °C or above</td>
<td>1 500</td>
<td>88</td>
<td>94</td>
</tr>
<tr>
<td>30 °C or above</td>
<td>1 400</td>
<td>82</td>
<td>87</td>
</tr>
</tbody>
</table>

² Initial doses may need to be higher in conditions of high sorption or leakage.

² The minimum level of mortality achieved by the treatment for this species has been estimated by extrapolation from a model fitted to the experimental data.
The Technical Panel on Phytosanitary Treatments based its evaluation of this treatment for *A. glabripennis* on the research reported by Barak et al. (2006).

The general effectiveness of this treatment against other pests has been supported by Barak et al. (2010), Binker et al. (1999), Ducom et al. (2003), La Fage et al. (1982), Mizobuchi et al. (1996), Osbrink et al. (1987), Soma et al. (1996, 1997), Williams and Sprenkel (1990) and Zhang (2006).

If the CT is not achieved within a single 24 hour period (even if the minimum concentration is achieved), corrective action will need to be taken. The treatment may be extended for a maximum of two hours without adding more sulphuryl fluoride, or it may be restarted.

References

The present annex to the standard may refer to International Standards for Phytosanitary Measures (ISPMs). ISPMs are available on the International Phytosanitary Portal (IPP) at https://www.ippc.int/core-activities/standards-setting/ispbs.

Publication history
This is not an official part of the standard
2006-09 Treatment submitted in response to 2006-08 call for treatments.
2006-12 TPPT reviewed treatment.
2007-07 Revised draft considered by TPFQ.
2007-12 Further revised draft submitted to TPPT.
2008-12 TPFQ discussion.
2009-01 TPPT reviewed draft.
2009-07 Amended draft considered by TPFQ.
2010-07 Draft updated and recommended to SC.
2010-09 TPFQ discussion.
2011-04 SC e-decision.
2011-05 SC via e-discussion returned to TPPT.
2011-07 TPPT revised draft based on SC comments.
2011-10 TPPT reviewed draft.
2012-02 TPFQ discussion.
2012-12 TPPT reviewed draft.
2013-07 TPPT reviewed draft based on additional information from Submitter.
2014-01 TPPT deferred draft review pending information from specialists.
2014-06 TPPT reviewed draft based on information from specialists; TPPT recommended topic Sulphuryl fluoride fumigation of wood packaging material (2007-101) be split into two topics (one for insects and one for nematodes and insects); TPPT recommended drafts to SC for consultation.
2015-07 First consultation.
2016-09 TPPT recommended to SC for adoption.
2017-04 CPM-12 adopted the phytosanitary treatment.
Publication history last updated: 2017-04
This page is intentionally left blank
IPPC

The International Plant Protection Convention (IPPC) is an international plant health agreement that aims to protect cultivated and wild plants by preventing the introduction and spread of pests. International travel and trade are greater than ever before. As people and commodities move around the world, organisms that present risks to plants travel with them.

Organization
- There are over 180 contracting parties to the IPPC.
- Each contracting party has a national plant protection organization (NPPO) and an Official IPPC contact point.
- Nine regional plant protection organizations (RPPOs) work to facilitate the implementation of the IPPC in countries.
- IPPC liaises with relevant international organizations to help build regional and national capacities.
- The Secretariat is provided by the Food and Agriculture Organization of the United Nations (FAO).

International Plant Protection Convention (IPPC)
Viale delle Terme di Caracalla, 00153 Rome, Italy
Tel: +39 06 5705 4812
Email: ippc@fao.org | Web: www.ippc.int