PT 38: Irradiation treatment for *Carposina sasakii*
This page is intentionally left blank
This phytosanitary treatment was adopted by the Fifteenth Session of the Commission on Phytosanitary Measures in 2021. The annex is a prescriptive part of ISPM 28.

ISPM 28
Phytosanitary treatments for regulated pests

PT 38: Irradiation treatment for *Carposina sasakii*

Adopted 2021; published 2022

Scope of the treatment
This treatment describes the irradiation of fruits and vegetables at 228 Gy minimum absorbed dose to prevent the emergence of viable adults of *Carposina sasakii* at the stated efficacy.¹

Treatment description

<table>
<thead>
<tr>
<th>Name of treatment</th>
<th>Irradiation treatment for Carposina sasakii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active ingredient</td>
<td>n/a</td>
</tr>
<tr>
<td>Treatment type</td>
<td>Irradiation</td>
</tr>
<tr>
<td>Target pest</td>
<td>Carposina sasakii (Matsumura, 1900) (Lepidoptera: Carposinidae)</td>
</tr>
<tr>
<td>Target regulated articles</td>
<td>All fruits and vegetables that are hosts of Carposina sasakii</td>
</tr>
</tbody>
</table>

Treatment schedule
Minimum absorbed dose of 228 Gy to prevent the emergence of viable adults of *Carposina sasakii*.

There is 95% confidence that the treatment according to this schedule prevents development of viable adults from not less than 99.9893% of eggs and larvae of *Carposina sasakii*.

This treatment should be applied in accordance with the requirements of ISPM 18 (*Guidelines for the use of irradiation as a phytosanitary measure*).

This treatment should not be applied to fruit and vegetables stored in a modified atmosphere because the modified atmosphere may affect the treatment efficacy.

Other relevant information
Because irradiation may not result in outright mortality, inspectors may encounter live but non-viable *Carposina sasakii* (eggs, larvae or deformed adults) during the inspection process. This does not imply a failure of the treatment.

The Technical Panel on Phytosanitary Treatments based its evaluation of this treatment on the research reported by Zhan et al. (2014), which determined the efficacy of irradiation as a treatment for this pest

¹ The scope of phytosanitary treatments does not include issues related to pesticide registration or other domestic requirements for contracting parties’ approval of treatments. Treatments adopted by the Commission on Phytosanitary Measures may not provide information on specific effects on human health or food safety, which should be addressed using domestic procedures before contracting parties approve a treatment. In addition, potential effects of treatments on product quality are considered for some host commodities before their international adoption. However, evaluation of any effects of a treatment on the quality of commodities may require additional consideration. There is no obligation for a contracting party to approve, register or adopt the treatments for use in its territory.
in *Malus pumila* ‘Red Fuji’. Additional information on the most tolerant life stage was also considered from Li *et al.* (2016).

The efficacy of this schedule was calculated based on a total of 30 580 late fifth-instar larvae treated with no viable adult emergence; the control emergence was 91.4%.

Extrapolation of treatment efficacy to all fruits and vegetables was based on knowledge and experience that radiation dosimetry systems measure the actual radiation dose absorbed by the target pest independent of host commodity, and evidence from research studies on a variety of pests and commodities. These include studies on the following pests and hosts: *Anastrepha fraterculus* (*Eugenia pyriformis, Malus pumila* and *Mangifera indica*), *Anastrepha ludens* (*Citrus paradisi, Citrus sinensis, Mangifera indica* and artificial diet), *Anastrepha obliqua* (*Averrhoa carambola, C. sinensis* and *Psidium guajava*), *Anastrepha suspensa* (*Averrhoa carambola, C. paradisi* and *Mangifera indica*), *Bactrocera tryoni* (*C. sinensis, Solanum lycopersicum, Malus pumila, Mangifera indica, Persea americana and Prunus avium*), *Cydia pomonella* (*Malus pumila* and artificial diet), *Grapholitha molesta* (*Malus pumila* and artificial diet), *Pseudococcus jackbeardsleyi* (*Cucurbita sp.* and *Solanum tuberosum*) and *Tribolium confusum* (*Triticum aestivum, Hordeum vulgare* and *Zea mays*) (Bustos *et al.*, 2004; Gould and von Windeguth, 1991; Hallman, 2004a, 2004b, 2013; Hallman and Martinez, 2001; Hallman *et al.*, 2010; Jessup *et al.*, 1992; Mansour, 2003; Tunçbilek and Kansu, 1996; von Windeguth, 1986; von Windeguth and Ismail, 1987; Zhan *et al.*, 2016). It is recognized, however, that treatment efficacy has not been tested for all potential fruit and vegetable hosts of the target pest. If evidence becomes available to show that the extrapolation of the treatment to cover all hosts of this pest is incorrect, the treatment will be reviewed.

References

The present annex may refer to ISPMs. ISPMs are available on the International Phytosanitary Portal (IPP) at https://www.ippc.int/core-activities/standards-setting/isps.

Li, B., Gao, M., Liu, B., Li, T., Wang, Y. & Zhan, G. 2016. Effects of irradiation of each of the five peach fruit moth (Lepidoptera: Carposinidae) instars on 5th instar weight, larval mortality and

Publication history

This is not an official part of the standard

2017-06 Treatment submitted in response to 2017-02 call for treatments.

2017-11 Technical Panel on Phytosanitary Treatments (TPPT) reviewed and requested further information from submitter.

2018-05 Standards Committee (SC) added topic Irradiation treatment for Carposina sasakii (2017-026) to the TPPT work programme.

2018-05 Submitter supplied responses to the request for further information.

2018-06 TPPT revised the draft and recommended it to SC for first consultation.

2019-01 SC approved the draft for consultation via e-decision (2019_eSC_May_04).

2019-07 First consultation.

2020-02 TPPT virtual meeting approved the responses to consultation comments and recommended the draft for consultation.

2020-07 Second consultation.

2020-11 TPPT reviewed and recommended to SC for approval for adoption by the CPM.

2021-03 CPM adopted the phytosanitary treatment.

2022-02 IPPC Secretariat fixed an error in the References section.

Publication history last updated: 2022-02
The International Plant Protection Convention (IPPC) is an international plant health agreement that aims to protect global plant resources and facilitate safe trade. The IPPC vision is that all countries have the capacity to implement harmonized measures to prevent pest introductions and spread, and minimize the impacts of pests on food security, trade, economic growth, and the environment.

Organization
- There are over 180 IPPC contracting parties.
- Each contracting party has a national plant protection organization (NPPO) and an Official IPPC contact point.
- 10 regional plant protection organizations (RPPOs) have been established to coordinate NPPOs in various regions of the world.
- The IPPC Secretariat liaises with relevant international organizations to help build regional and national capacities.
- The Secretariat is provided by the Food and Agriculture Organization of the United Nations (FAO).