

Induced Genetic Diversity for Resistance to Fall Army Worm in Maize

The Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture

Shoba Sivasankar
Section Head, Plant Breeding and Genetics

Plant Breeding & Genetics (PBG)

Demand-driven research innovations, applications

Develop improved, climate-change adapted, crop varieties for food and nutrition security, reduced poverty through nuclear and related biotechnologies

- Induced genetic variation
- Genomics
- Precision phenotyping (selection)
- Speed-breeding technologies
- Seed systems for farmers' access to new varieties

Delivered though: Coordinated Research Projects and

Technical Cooperation Projects

Induced Genetic Variation & Mutation Breeding

- Spontaneous mutations are the basis of evolution
- Naturally occurring mutations were selected during crop domestication, crop improvement
- Induced genetic variation provides wider selection pools of improved plants

Ongoing Projects in Insect Pest Resistance

Induced genetic diversity for pest resistance Non-Bt alternative

- Resistance to Fall Army Worm in Maize
 - IAEA Technical Cooperation Project, CAF 5015
 - National project, Central African Republic
- Resistance to chickpea pod borer, Helicoverpa armigera
 - Coordinated Research Project, CRP D22006
 - India, Pakistan
 - Duration 2019-2023
- Resistance to cowpea pod borer, Maruca vitrata
 - Coordinated Research Project, CRP D22006
 - Burkina Faso, India, Kenya, Namibia, Nigeria,
 Senegal, Zambia

Improving Productivity of Maize and Developing Resistance to Fall Armyworm Using Radiation-Induced Novel Genetic Diversity —

Scope:

Phase II

To increase resistance to fall armyworm in maize to enhance productivity through induced genetic variation, mutation breeding and the development and release of improved varieties.

- Initiate mutation breeding in maize with radiation-induced novel genetic diversity
- Capacity development to screen and select for FAW resistance
- Advance mutant lines showing FAW resistance in the breeding program

Photo: Lucie Aba-Toumnou Univ of Bangui

Photo: CIMMYT

Radiation-Induced Genetic Diversity and Mutation Breeding for Resistance to Fall Army Worm (FAW) in Maize

Timeline

- Current project is Phase II
- IAEA national Technical Cooperation (TC) Project
- # CAF 5015 for Central African Republic
- Main Counterpart: Univ of Bangui
- Two-year project from Jan 2022 to Dec 2023
- Phase I project in 2020 2021 (CAF 5013)
- A follow-up Phase III project will be required for:
 - Variety registration and release
 - Molecular analysis of genetic associations for FAW resistance in maize

Photo: Lucie Aba-Toumnou, Univ of Bangui

Relevance to IPPC

- FAW, a serious transboundary insect pest
 - Severe threat to food security
 - Estimated annual loss up to 6.2 billion USD in Africa
- CAF 5013, 5015
 - Complements FAO's global action against FAW
 - Genetic resistance in maize
 - Durable and sustainable measure
- FAO's Global action against FAW
 - Detection and surveillance
 - Prevention of entry/spread
 - Reduced pesticide use

Photo Courtesy: FAO

Main Outputs

Phase I

- Germplasm for breeding identified
- Seed irradiated, generation advance in progress
- Capacity development
 - Infrastructure: Greenhouse constructed

Phase II

- Screening for FAW resistance
- Generation advancement
- Capacity development for researchers
 - Screening for genetic resistance (Fellowship, Scientific Visit)
 - Mutation breeding (Fellowship, Scientific Visit)
 - Mutation breeding (National Training Course)
 - Establishment of insect rearing facility for FAW screening
 - Small equipment and consumables

Mutation Breeding Examples – Seed Crops

Over 3400 global records in the FAO/IAEA Mutant Variety Database
 Mutant Variety Database - Home (iaea.org)

Predominantly seed crops

Drought tolerant groundnut in Sudan (SUD5033, SUD5037)

Heat tolerant cotton in Pakistan (RAS5075)

Mutation Breeding Example – Vegetative Crop

Developing banana varieties resistant to TR4 (CRP D22005)

Screening for resistance under controlled greenhouse conditions (PBG Laboratory)

Field testing for resistance to TR4 (Ganjun Yi, GDAAS)

