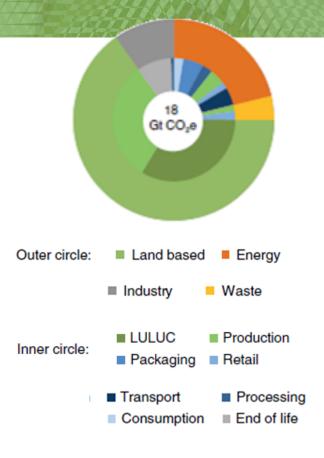


Nature's Climate Shield: how biological control bolsters resilience while curbing carbon emissions

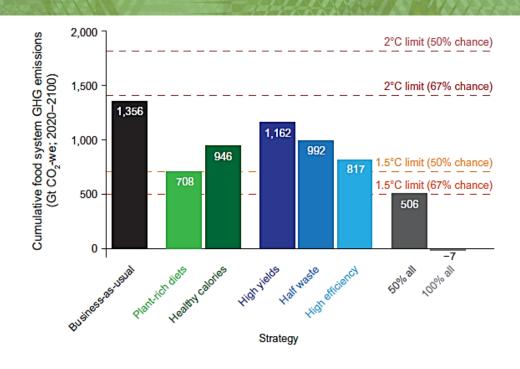
Kris A.G. Wyckhuys, PhD

FAO NSP


Crop pests in a warming world: an unfolding crisis

- Multifaceted impacts on agricultural pests, crop performance and pest control efficacy
 - Altering pest and pathogen bio-ecology
 - 2/3 of tropical pests to colonize temperate zones
 - Decaying food webs and jeopardized (direct, indirect) plant defenses
 - Accelerating pesticide resistance development
 - Increasing crop losses
 - Yield losses due to cereal pests may rise by 10-25% per degree warming
- Major implications for food security, farmer livelihoods and societal stability

Anthropogenic global warming: a planetary emergency


- Global food system annually generates greenhouse gas (GHG) emissions worth 18 Gt CO₂e or 4.9 Gt carbon equivalent (CE)
 - ~ 30% global GHG emissions
 - Rapidly rising esp. in developing countries
- 'On-farm' production responsible for 39% emissions
- Cropland emissions primarily ascribed to
 - CH₄ from rice cultivation,
 - CO_2 , N_2O , and CH_4 from peatland draining,
 - N₂O from N fertilizer application
- Curbing carbon emissions: a pressing imperative

Decarbonizing the global food system

- Food system change can lower emissions
 - Transition to plant-rich diets could attain ~ 50%
 GHG reduction
- Yet, cultivating crops is still (too) energy-intensive
 - 15-50% GHG in wheat production due to (synthetic) fertilizers and pesticides
- Synthetic pesticides: <u>blind-spot</u> in carbon accounting
 - Carbon footprint unquantified
 - Under-recognized as a driver of environmental change, human health hazards and biodiversity loss

Pesticide volumes

- Extract FAOSTAT data for insecticides, fungicides and bactericides, and herbicides (including seed treatment)
- Average values over 2016-2018

Carbon conversion

- Compute carbon equivalents for pesticide production, transportation, storage and transfer as per Lal (2004)
- Add 0.4 kg CE/kg active ingredient (a.i.) for pesticide formulation

Application energy use

- Incorporate 39.2% energy expenditure for field spraying / equipment manufacturing (Audsley et al., 2009)
- Use 511 MJ/kg a.i. of production energy for seed treatment

Country	Carbon emissions (Mt CE)		Passenger	Barrels of oil
	Average	Range	vehicles driven ('000s)	consumed ('000s)
G7				
Canada	0.703	0.222-1.351	561	5,973
France	0.534	0.178-1.023	426	4,534
Germany	0.335	0.107-0.605	267	2,846
Italy	0.354	0.127-0.649	282	3,006
Japan	0.379	0.123-0.686	302	3,220
United Kingdom	0.131	0.045-0.251	105	1,115
USA	3.033	0.948-5.689	2,419	25,751
BRICS				
Brazil	3.004	0.952-5.650	2,395	25,500
Russia	0.558	0.182-1.056	445	4,739
India	0.295	0.093-0.511	235	2,505
China	2.145	0.684-3.894	1,710	18,207
South Africa	0.189	0.061-0.349	151	1,607
World	19.936	6.393-37.233	15,897	169,239
Olimenta Olemana and Dis		0.0 - t - l 0005 4	1.00 10.00 OFT	

16 million/yr

170 million/yr

18.4 per yr

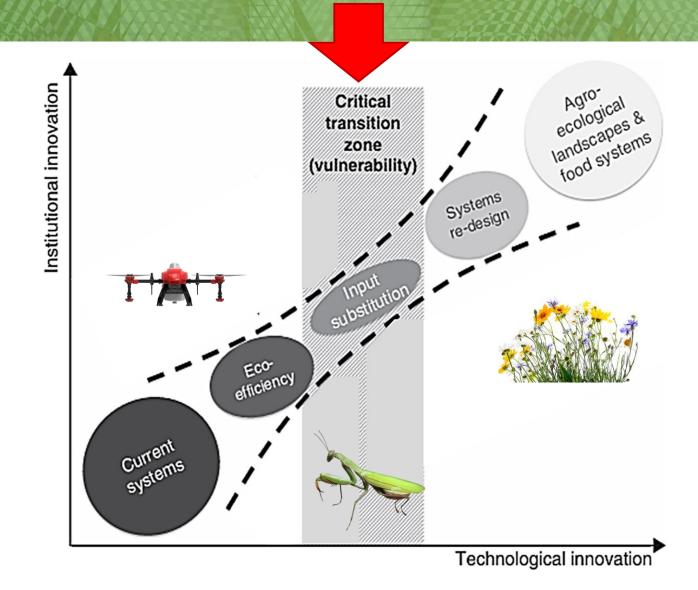
Time to turn the tide

Pesticide usage intensity does not cease to rise

- Continuous growth post-1950s
 - 2010-20: pesticide use grew by 20% globally and 153% in low-income countries

Two-pronged remediative action

- Imperative #1: replace chemicals with biodiversity-based alternatives
- Imperative #2: build biodiverse, pestresilient cropping systems


Focus on pesticide-intensive crops & scale 'best-bet' solutions

Step-by-step towards pestresilient systems

#1. Enhance efficiency of synthetic pesticides – without compromising resilience

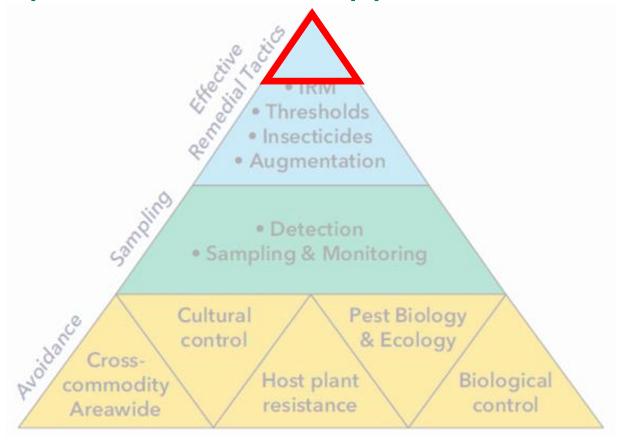
- **#2.** Systematically substitute chemicals with non-chemical alternatives
- Reclaim core ecosystem services, remove chemical toxics
- **#3.** Pursue a 'wholesale' redesign of farming systems

Powerful allies for a low-carbon future

Biological control is valued at **US\$ 191 billion/year** globally (Pimentel et al., 1997), including **\$20.7 billion/year** natural control of native insects in the USA alone (Losey and Vaughan, 2006).

The little things that run the world (EO Wilson)

Biological control - a 'best bet' crop protection solution since 300 AD


- 1. Active conservation of resident farm biota
- Naturally-occurring predators alone increase crop yields by 25%.
- Raises farm-level revenue by hundreds of USD per ha
- 2. Field release of laboratory-grown biota
- More than 360 beneficial organisms used on >30 million ha
- Product development 1:10 success rate (1:140,000 for pesticides)
- 3. Translocation of non-native organisms
- Restores ecological balance of invaded agro-ecosystems
- Deployed on ~10% of global terrestrial surface

Key to pest-suppressive, climate-resilient food systems

IPM: FAO's compass for sustainable crop protection

Pesticides as a measure of last resort

not as unguided 'blanket' measures e.g., soil drenches, seed treatment

Biological control & agroecology as the **first line of defense**

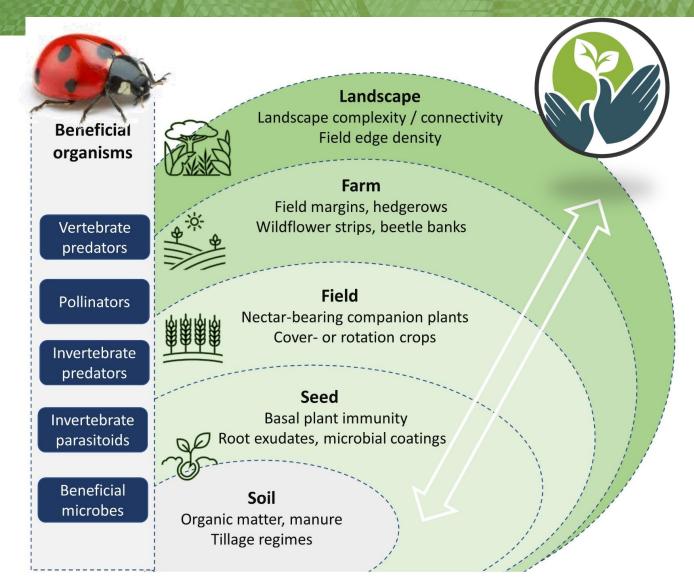
Augmentation biological control

> 212 species of beneficial insects and mites commercially available

> 42 species of beneficial fungi, bacteria, viruses or nematodes available for pest/weed/disease control

Market growth 10-15% (as compared to ~5% for chemical pesticides)

Restoring balance in invaded agroecosystems


- Biological control: durable, self-sustaining, environmentally sound solution for invasive pest mitigation
- In the Asia-Pacific, biological control generates dividends of US\$ 14.6–19.5 billion/year
 - Reconstituted yields of critical food & livelihood security crops e.g., coconut, banana, breadfruit
 - Non-chemical pest control at continental scales
- Its economic benefits amply surpass those of Green Revolution rice germplasm
- In tropical Africa, biological control quickest way to control invasive biota, with highest return on investment

Building resilience through agroecology and technology integration

- Pest prevention e.g., crop sanitation, manuring, cultural control
- Legume integration, field and landscape diversification
- Microbial coatings / inoculants
- Crop varietal mixtures, resistance inducers and defense priming
- Precision agriculture, robotic weeders

FAO as a steadfast supporter

- IPM Farmer Field Schools FFS (1990s)
 - Cut pesticide use up to 82-92% in Vietnam or Bangladesh rice; 78% in India cotton; 50-70% in Vietnam tea or cabbage
 - Enhanced crop yields by 13%
 - Raised farmers' revenue by 19%
- From 1992 to 1997, FAO-led FFS training programs cut insecticide use by 50% (without yield loss) on 2 million rice farms in the Mekong Delta
- In the US Midwest, IPM reduces pesticide use by 95% while enhancing pollination by 129% and yield by 26%

FAO as a steadfast supporter

- Global Action against FAW (2019-24)
- FAO's coordinated response against the invasive fall armyworm, Spodoptera frugiperda
- Established a globe-spanning plant health research, extension, and policy support network
 - Reduced FAW yield losses to 3-5% in multiple countries
 - Cut farmers' pesticide expenditure by 30-50% in Kenya, Burkina Faso and Zambia
 - Increased farmer income by up to US\$ 666 per hectare
- Training on biopesticide registration in the Caribbean and Africa
- Established laboratory capacity for production of natural enemies

Thank you