NIMF 27 ANEXO 2

ESP

Producido por la Secretaría de la Convención Internacional de Protección Fitosanitaria (CIPF)

NIMF 27 Protocolos de diagnóstico para las plagas reglamentadas

PD 2: Plum pox virus

Adoptado en 2012; publicado en 2016

ÍNDICE

..... 2 2. Información taxonómica Detección e identificación 3. Detección biológica..... 3.1 3.2 Detección e identificación serológica 3.2.1 Ensayo indirecto de inmunoabsorción enzimática en fa de anticuerpos (DASI-ELISA)..... 3.2.2 Ensayo de inmunoabsorción enzimática en fas Je anticuerpos (DAS-ELISA)5 3.3 Detección e identificación molecula5 3.3.1 3.3.2 Inmunocaptura seguida de re ón e cader de la polimerasa con retrotranscriptasa (RT-PCR).....6 erativa se uida de reacción en cadena de la polimerasa.. 6 3.3.3 Transcripción inversa coo 3.3.4 Transcripción inversa e tiel ora de la reacción en cadena de la polimerasa 79 Identificación de las cepa 4.1 4.2 4.2.1 aptura seguida de reacción en cadena de la polimerasa con 4.2.2 4.2.3 ipción inversa cooperativa, reacción en cadena de la polimerasa......11 4.2.4 5. 7. Agradecimientos 13 8.

1. Información sobre la plaga

La sharka (viruela del ciruelo) es una de las enfermedades más graves de los frutales de hueso. Esta enfermedad, causada por el *Plum pox virus* (PPV), afecta a las plantas del género *Prunus*. Es especialmente perjudicial para *P. armeniaca*, *P. domestica*, *P. persica* y *P. salicina* porque reduce la calidad y causa caída prematura de los frutos. Se estima que desde la década de 1970, los costos relacionados con el manejo de la sharka en el mundo superan los 10 000 millones de euros (Cambra *et al.*, 2006b).

En 1917-18 se comunicó por primera vez la presencia de la sharka en *P. domestica*, en Bulgaria, y en 1932 se describió como una enfermedad viral. Desde entonces, el virus se ha dispersado de forma progresiva en gran parte de Europa, alrededor de la cuenca mediterránea y en el Cercano y Medio Oriente. Se ha localizado con una distribución restringida en América del Sur, América del Norte y Asia (EPPO, 2006; CABI, 2011).

El PPV pertenece al género *Potyvirus* de la familia de los *Potyviridae*. Sus partículas son varillas flexuosas de aproximadamente 700 nm × 11 nm y están formadas por una colécula de ARN monocatenaria de casi 10 000 nucleótidos, cubiertos de hasta 2 000 subunidades de un sola proteína de envoltura (García y Cambra, 2007). El PPV se transmite en el campo por áfit os de for la no persistente, pero el movimiento del material vegetal propagativo infectado es la la procipa del alspersión del PPV a larga distancia.

Los extractos de PPV pueden clasificarse actualmente en significarse actualmente en si D (Dideron), M (Marcus), e tipos Turc C (Cherry), EA (El Amar), W (Winona), Rec (Recombinan (Candresse v Cambra, 2006; James y Glasa, 2006; Ulubaş Serçe et al., 2009). La mayoría traciós de PPV pertenecen a los tipos a facilidad D y M. Las cepas de PPV D y M pueden infectar q lantas de P. armeniaca y P. domestica, pero difieren en su capacidad para infectar cultiv res de P sica. La patogenicidad de las diversas cepas es diferente; por ejemplo, los extractos de tid causar epidemias más rápidas y síntomas M suels más graves que los extractos de tipo D e domestica, P. persica y P. salicina. Los extractos de tipo EA se restringen geogra icamente a Egipto y se dispone de poca información sobre su epidemiología y sus propiedades muchos países europeos y en Turquía se han gicas. En infectan P. avium y P. cerasus. Dichos extractos identificado recientemente extractos forman un tipo diferente definido com PPV-C. Se extrajo un PPV atípico de P. domestica en Canadá 7. Además, se han descrito como PPV-Rec los recombinantes (PPV-W) que representa otr naturales entre los tipos] M de PPV, Le muestran un comportamiento epidemiológico similar al del ado recientemente sobre un extracto de un segundo tipo de recombinante tipo D. En Turquía se h (tipo T).

Para más información sobre el PPV, con ilustraciones y síntomas de la enfermedad, consúltense Barba et al. (2011), CA. V. 2011), EPPO (2004), EPPO (2006), García y Cambra (2007) y PaDIL (2011).

2. Información taxonómica

Nombre: Plum pox virus (PPV)
Sinónimo: Virus de la sharka
Posición taxonómica: Potyviridae, Potyvirus

Nombres comunes: Enfermedad de la sharka, viruela del ciruelo

3. Detección e identificación

En condiciones naturales, el PPV infecta con facilidad árboles frutales del género *Prunus* utilizados como variedades comerciales o portainjertos: *P. armeniaca, P. cerasifera, P. davidiana, P. domestica, P. mahaleb, P. marianna, P. mume, P. persica, P. salicina* e híbridos interespecíficos entre dichas especies. *Prunus avium, P. cerasus y P. dulcis* podrán infectarse de forma ocasional. El virus también infecta muchas especies silvestres y ornamentales de *Prunus* como *P. besseyi, P. cistena, P. glandulosa, P. insititia, P. laurocerasus, P. spinosa, P. tomentosa y P. triloba.* En condiciones experimentales, el

PPV puede trasmitirse de forma mecánica a un gran número de *Prunus* spp. y a muchas plantas herbáceas (*Arabidopsis thaliana*, *Chenopodium foetidum*, *Nicotiana benthamiana*, *N. clevelandii*, *N. glutinosa* y *Pisum sativum*).

Los síntomas del PPV podrán manifestarse en hojas, brotes, corteza, pétalos, frutos y huesos en el campo. Suelen ser distinguibles en las hojas temprano en la temporada de crecimiento; consisten en una decoloración suave, verde claro; manchas, franjas o anillos cloróticos; aclaramiento o amarillamiento de las nervaduras; o deformación foliar. Algunos de estos síntomas foliares se parecen a los que provocan otros virus, como el virus del arabesco americano del ciruelo. Prunus cerasifera cv. GF 31 muestra un encorchado de color óxido y resquebrajamiento de la corteza. Los síntomas florales pueden darse en los pétalos (decoloración) de algunos cultivares de P. persica cuando se infectan por PPV-M o en P. glandulosa infectado por PPV-D. Los frutos infectados muestran manchas cloróticas o anillos o líneas con una ligera pigmentación amarilla. Los frutos pueden deformarse o adoptar una forma irregular y desarrollar zonas marrones o necróticas bajo los anillos decolorados. Ciertas deformaciones del fruto, especialmente en P. armeniaca y P. domestica, son similares a las provocadas por el virus de la mancha clorótica de la hoja del manzano. Los frutos enfermos podrán mostrar parde interno y gomosis de la carne, y además pérdida de calidad. En los casos graves, los frutos enf prematuramente rmos cae del árbol. Por lo general, los frutos de los cultivares de maduración tempo n síntomas más a muest marcados que los de maduración tardía. Los huesos de los frutos e neniaca muestran cen a partir de estos frutos manchas o anillos típicos de tono pálido. El alcohol o los licores se pro no son comercializables debido a su desagradable sabor. La ap ción de síntomas y su intensidad dependen en gran medida de la planta hospedante y de las q dicas; por ejemplo, el virus ndicione puede mantenerse latente durante varios años en los climas

La NIMF 31 (Metodologías para muestreo de envíd entación general sobre las metodologías de muestreo. Para detectar el PPV es imprescindi le que la sel cción de las muestras sea adecuada. El muestreo debería tener en cuenta la biología del v ıs y las d ndiciones climáticas locales, en particular hiento. Si se encuentran síntomas típicos, las condiciones del tiempo durante la ten recolecte flores, hojas y frutos que presen omas. De las plantas asintomáticas deberían tomarse en los sin muestras de brotes de por lo menos un as maduras o completamente desarrolladas de la ño con h la detección no es fiable en brotes de menos de un parte central de cada una de las rama sipales omo minimo, en cuatro sitios diferentes (p. ej., cuatro ramas o año). Las muestras deberían tomarse, cuatro hojas) de cada planta dispensable ya que la distribución del PPV es desigual. El muestreo no debería reali arse durante s meses de temperaturas más altas. Las pruebas son menos fiables si se realizan o ras tomadas durante el otoño que con las obtenidas al principio de la mue Ma recogerse preferiblemente de las partes internas de la copa del primavera. El material v al deb árbol. En primay pueden ser flores, brotes con las hojas totalmente desarrolladas o otoño pueden utilizarse para el análisis las hojas maduras y la piel de los frutos frutos. En vera maduros recogio el campo o de los lugares de embalaje. Las flores, las hojas, los brotes y la piel del arse a una temperatura de 4 °C por no más de 10 días antes del procesamiento. Los fruto pueden almad frutos pueden almacenarse durante un mes a una temperatura de 4 °C antes del procesamiento. En invierno pueden seleccionarse las yemas dormidas o los tejidos de corteza de la zona basal de ramillas, brotes y ramas, o espolones enteros.

La detección de PPV puede lograrse mediante una prueba biológica, serológica o molecular; para su identificación se requiere una prueba serológica o molecular. Una prueba serológica o molecular es el requisito mínimo para la detección e identificación de PPV (p. ej. en el diagnóstico rutinario de una plaga establecida ampliamente en un país). En caso de que la organización nacional de protección fitosanitaria (ONPF) requiera mayor confianza en la identificación de PPV (p. ej. la detección en un área en la que no se sabe si el virus está presente, o en un envío procedente de un país en el que se declara que el virus está ausente), podrán realizarse más pruebas. En los casos en que la identificación inicial se haya realizado mediante un método molecular, las pruebas posteriores deberían utilizar técnicas serológicas y viceversa. También podrán realizarse pruebas adicionales o con el fin de identificar la cepa de PPV que está presente. En todos los casos, deben incluirse controles negativos y positivos en las pruebas. En las siguientes secciones se describen las técnicas recomendadas.

En ciertas circunstancias (p. ej. en el diagnóstico rutinario de una plaga establecida ampliamente en un país) se podrán efectuar pruebas sobre varias plantas simultáneamente, utilizando una muestra múltiple obtenida de un cierto número de plantas. La decisión de realizar las pruebas en muestras de una sola planta o muestras múltiples dependerá de la concentración del virus en las plantas y del nivel de confianza requerido por la ONPF.

En este protocolo de diagnóstico, los métodos (incluidas las referencias a nombres comerciales) se describen según se publicaron, ya que en ellos se define el nivel inicial de sensibilidad, especificidad y/o reproducibilidad adquirido. Los procedimientos de laboratorio presentados en los protocolos podrán ajustarse a las normas de los laboratorios individuales, siempre que estén adecuadamente validadas.

3.1 Detección biológica

Las principales plantas indicadoras para la indexación de PPV son plántulas de P. cerasifera ev. GF31, P. persica cv, GF305, P. persica x P. davidiana cv. Nemaguard, o P. tomentosa. Las plantas indicadoras crecen a partir de semilla, se plantan en una mezcla de suelo . bien drenada v se mantienen en un invernadero protegido contra insectos entre los 18 °C y los 25 °C hasta o suficientemente grandes para la injertación (normalmente 25-30 cm de alto con un diá netro de –4 mm). Como alternativa se pueden injertar púas de plantas indicadoras en plántulas de d as espec es de *Prunus*. La inoculación mediante injertos de los indicadores debe realizarse s convencionales. como la gemación (Desvignes, 1999), con al menos cuatro réplicos por pla ta indicadora. Las plantas indicadoras injertadas se mantienen en las mismas condiciones y, t s después, se podan hasta semar unos pocos centímetros sobre el injerto (Gentit, 2006). La mtas in das deberían inspeccionarse durante por lo menos seis semanas para constatar si presen eas. Los síntomas, en especial las líneas y franjas cloróticas, se observan en las partes p lanta después de tres o cuatro semanas y deben compararse con controles positivos y san . En Dams egt et al. (1997; 2007) y Gentit (2006) pueden encontrarse ilustraciones de los síntomas rovocado por el PPV en las plantas indicadoras.

cificidad, sensibilidad o fiabilidad de la No existen datos cuantitativos publicaç iniertación. Este método se utiliza de for izada en programas de certificación y se considera na genera trata de una prueba rápida (el desarrollo del síntoma un método sensible de detección. Sin mb rgo, no s requiere muchas semanas tras la in solo puede emplearse en material de propagación; un espacio de invernadero con temperatura controlada; y los requiere instalaciones dedicades como con los de otros agentes transmisibles por injerto. Además, síntomas observados puede existen cepas asintomáti s que justamente por no inducir síntomas, no son detectables en las plantas indicadoras.

3.2 Detección e id ntificación serológica

Los ensayos de un notas ción enzimática (ELISA) son muy recomendables para someter a análisis grandes cantidades le muestras.

Para el procesamiento de la muestra se corta en trozos pequeños aproximadamente 0,2-0,5 g de material vegetal fresco, que se coloca en un tubo o una bolsa de plástico adecuados. La muestra se homogeneiza en aproximadamente 4-10 ml (1:20 p/v) de tampón de extracción usando un homogeneizador eléctrico de tejidos o un rodillo manual, martillo o instrumento similar. El tampón de extracción es salino con tampón fosfato (PBS) de pH 7,2-7,4, con un 2 % de polivinilpirrolidona y un 0,2 % de dietilditiocarbamato de sodio (Cambra *et al.*, 1994), o un tampón alternativo adecuadamente validado. El material vegetal debería homogeneizarse por completo y utilizarse fresco.

3.2.1 Ensayo indirecto de inmunoabsorción enzimática en fase doble de anticuerpos (DASI-ELISA)

El DASI-ELISA, también denominado ensayo de inmunoabsorción enzimática en fase triple de anticuerpos (TAS-ELISA), debería realizarse según lo indicado por Cambra *et al.* (1994) con un anticuerpo monoclonal específico como 5B-IVIA, siguiendo las instrucciones del fabricante.

El 5B-IVIA es actualmente el único anticuerpo monoclonal que detecta todas las cepas del PPV con alta fiabilidad, especificidad y sensibilidad (Cambra *et al.*, 2006a). En una prueba del anillo DIAGPRO realizada por 17 laboratorios con un grupo de 10 muestras, infectadas por PPV (PPV-D, PPV-M y PPV-D+M) y muestras sanas de Francia y España, la precisión del DASI-ELISA con el anticuerpo monoclonal 5B-IVIA fue del 95 % (número de valores negativos y positivos auténticos diagnosticados por la técnica/número de muestras analizadas). Esta precisión fue mayor que la obtenida con la inmunocaptura, transcripción inversa y reacción en cadena de la polimerasa (IC-RT-PCR) que fue del 82 %, o con la RT-PCR cooperativa (Co-RT-PCR) que fue del 94 % (Cambra *et al.*, 2006c; Olmos *et al.*, 2007). La proporción de valores negativos auténticos (número de valores negativos auténticos diagnosticado por la técnica/número de plantas sanas) que se identificó mediante DASI-ELISA con el anticuerpo monoclonal 5B-IVIA fue del 99,0 %, frente a la RT-PCR en tiempo real con ácido nucleico purificado (89,2 %) o muestras manchadas (98,0 %), o IC-RT-PCR (96,1 %). Capote *et al.* (2009) también informaron que existía una probabilidad del 98,8 % de que un resultado positivo obtenido en invierno con DASI-ELISA utilizando el anticuerpo monoclonal 5B-IVIA fuera un valor positivo auténtico.

3.2.2 Ensayo de inmunoabsorción enzimática en fase doble de articuerpo (DAS-ELISA)

El sistema de DAS-ELISA convencional o de biotina-estreptavidina debe a aplica se mediante kits basados en el anticuerpo específico monoclonal 5B-IVIA o en accuerpos poneronales que se haya demostrado que detectan todas las cepas del PPV sin experimenta reaccionas cruzadas con otros virus o con material vegetal sano (Cambra *et al.*, 2006a; Capote *et al.*, 209). Il prueba debería realizarse siguiendo las instrucciones del fabricante.

Mientras que el anticuerpo monoclonal 5B-IVIA detesta co especificidad, sensibilidad y fiabilidad todas las cepas del PPV, algunos anticuerpos policionales no sin específicos y tienen una sensibilidad limitada (Cambra *et al.*, 1994; Cambra *et al.*, 20 6a). Por la tanto, se recomienda el uso de métodos adicionales en todas las situaciones en que se bayas utilizado anticuerpos policionales en una prueba y la ONPF necesite más confianza en la ide afficación del 12V.

3.3 Detección e identificación no cular

Los métodos moleculares que utilizan transe-pción inversa-reacción en cadena de la polimerasa (RT-PCR) podrán ser más caros o reir may tiempo que las técnicas serológicas, en especial en las pruebas oleculares, en especial la RT-PCR en tiempo real, suelen ser a gran escala. Sin embargo los métous hicas más sensibles que las t erológicas. El uso de RT-PCR en tiempo real también evita un posible proceso de amplificación herior / ej. electroforesis de gel) y, por lo tanto, es más rápido y presenta inación que la PCR convencional. una probabilidad de

A excepción de in aune, ptura (IC)-RT-PCR (para la que no es necesario el aislamiento de ARN), la extracción de ARN debería realizarse con protocolos adecuadamente validados. Las muestras deberían colocarse en bolsas de plástico individuales para evitar la contaminación cruzada durante su extracción. Como alternativa para la RT-PCR en tiempo real, los extractos de plantas manchadas, impresos de secciones histológicas o muestras de material vegetal obtenidas por aplastamiento se pueden inmovilizar en papel secante o membranas de nailon y analizarse con RT-PCR en tiempo real (Olmos *et al.*, 2005; Osman y Rowhani, 2006; Capote *et al.*, 2009). No se recomienda utilizar muestras manchadas o impresos histológicos en la PCR convencional debido a su menor sensibilidad en comparación con la RT-PCR a tiempo real.

Cada método describe el volumen de la muestra extraída que debería usarse como molde. Dependiendo de la sensibilidad del método, la concentración mínima del molde que se requiere para detectar el PPV varía como sigue: RT-PCR, 100 fg RNA molde ml-1; Co-RT-PCR, 1 fg RNA molde ml-1; y RT-PCR en tiempo real, 2 fg RNA molde ml-1.

3.3.1 Transcripción inversa de la reacción en cadena de la polimerasa (RT-PCR)

Los cebadores RT-PCR utilizados en este ensayo son los cebadores de Wetzel et al. (1991),

P1 (5'-ACC GAG ACC ACT ACA CTC CC-3')
P2 (5'-CAG ACT ACA GCC TCG CCA GA-3')

o los de Levy y Hadidi (1994):

3'NCR efector (5'-GTA GTG GTC TCG GTA TCT ATC ATA-3')

3'NCR antisentido (5'-GTC TCT TGC ACA AGA ACT ATA ACC-3')

La mezcla de reacción, 25 μ l, tiene los siguientes componentes: 1 μ M de cada cebador (P1/P2 o el par cebador 3'NCR), 250 μ M dNTP, 1 unidad de transcriptasa inversa AMV, 0,5 unidades de polimerasa Taq DNA, 2,5 μ l 10 × tampón de polimerasa Taq, 1,5 mM MgCl₂, 0,3% Triton X-100 y 5 μ l RNA molde. La reacción se produce en las condiciones de termociclado descritas a continuación: 45 min a 42 °C, 2 min a 94°C, 40 ciclos de 30 s a 94 °C, 30 s o bien a 60 °C (cebadores P1 P1) o a 62 °C (cebadores 3'NCR) y 1 min a 72 °C, seguido de una extensión final de 10 min a 72 °C. Los productos de la PCR se analizan con electroforesis de gel. Los cebadores P1/P2 y 3'NCR produce 243 pare de bases (bp) y 220 bp amplicón, respectivamente.

El método de Wetzel *et al.* (1991) se evaluó analizando extractos de PPV de à cas mediterráneas (Chipre, Egipto, España, Francia, Grecia y Turquía). En el ensayo se puda on de ctar 10 fg de ARN viral, correspondiente a 2 000 partículas virales (Wetzel *et al.*, 1500). El meto de Levy y Hadidi (1994) se evaluó con extractos de PPV de Alemania, Egipto, España, Langa, Trecia, Hungría, Italia y Rumania.

3.3.2 Inmunocaptura seguida de reacción e cadena de la polimerasa con retrotranscriptasa (RT-PCR)

La fase de inmunocaptura debería realiza de siguiendo de Metzel *et al.* (1992), con savia vegetal extraída como se indica en el apartado 3.2 y utilizando tubos o bolsas de plástico individuales para evitar la contaminación

Preparar una dilución (1 µg ml⁻¹) de an icuerpos policionales o de un anticuerpo monoclonal específico de PPV (5B-IVIA) en un tampo bonato de pH 9,6. Añadir 100 µl de anticuerpos diluidos en tubos de PCR e incub rante 3 h. Lavar los tubos dos veces con 150 µl de l'avado). Enjuagar dos veces los tubos con agua libre de RNase. Aclarar PBS-Tween estéril (tar són d éase grapartado 3.2) mediante centrifugación (5 min a 15 500 \times g) y añadir 100 ul del extracto ב el sobrenadante. CR. Incubar durante 2 h en hielo a una temperatura de 37 °C. Lavar de PBS-Tween estéril. Preparar la mezcla de reacción RT-PCR como se los tubos tres do 3.3.1 utilizando los cebadores de Wetzel et al. (1992), y añadir directamente a describe en el ap los tubos de PCR. A plificar como se describe en el apartado 3.3.1.

La IC-RT-PCR requiere generalmente el empleo de anticuerpos específicos, aunque con los métodos de enlace directo podrá eliminarse esta necesidad. La IC-RT-PCR con anticuerpo monoclonal 5B-IVIA ha sido validada en una prueba del anillo DIAGPRO mostrando una precisión del 82 % en la detección del PPV (Cambra *et al.*, 2006c; Olmos *et al.*, 2007). Capote *et al.* (2009) informaron de una probabilidad del 95,8% de que un resultado positivo obtenido en invierno mediante IC-RT-PCR con el anticuerpo monoclonal 5B-IVIA fuera un valor positivo auténtico.

3.3.3 Transcripción inversa cooperativa seguida de reacción en cadena de la polimerasa

Los cebadores RT-PCR utilizados en este ensayo cooperativo (Co)-RT-PCR son los cebadores de Olmos, Bertolini y Cambra (2002):

Cebador interno P1 (5'-ACC GAG ACC ACT ACA CTC CC-3')

Cebador interno P2 (5'-CAG ACT ACA GCC TCG CCA GA-3')

Cebador externo P10 (5'-GAG AAA AGG ATG CTA ACA GGA-3')

Cebador externo P20 (5'-AAA GCA TAC ATG CCA AGG TA-3')

La mezcla de reacción de 25 μ l está formada por los siguientes componentes: 0,1 μ M de cebadores P1 y P2, 0,05 μ M de cebadores P10 y P20, 400 μ M de dNTP, 2 unidades de transcriptasa inversa AMV, 1 unidad de polimerasa de ADN Taq, 10 \times tampones de reacción de 2 μ l, 3 mM de MgCl₂, un 5 % de DMSO, un 0,3 % deTriton X-100 y 5 μ l de molde de ARN. La RT-PCR se produce en las condiciones de termociclado descritas a continuación: 45 min a 42 °C, 2 min a 94 °C, 60 ciclos de 15 s a 94 °C, 15 s a 50 °C y 30 s a 72 °C, seguido de una extensión final de 10 min a 72 °C.

La reacción RT-PCR se une a la detección colorimétrica de amplicones usando una sonda universal de PPV marcada con dioxigenina (DIG) en el extremo 3' (5'-TCG TTT ATT TGG CTT GGA TGG AA-DIG-3') como se indica a continuación. Desnaturalizar el ADNc amplificado a 95 °C durante 5 min e inmediatamente colocar en hielo. Colocar 1 µl de muestra en una membrana de nailon. Secar la membrana a temperatura ambiente y entrecruzar UV en un transiluminador durante 4 min a 254 nm. Para la prehibridación, colocar la membrana en un tubo de hibridación a 60 °C durante 1 h utilizando un tampón de hibridación estándar. Descartar la solución y llevar a cabo la hibri ezclando la sonda marcada con 3'DIG con un tampón de hibridación estándar en una concent ción fina de 10 pmol ml⁻¹, antes de incubar durante 2 h a 60 °C. Lavar la membrana dos veces du ate 15 p n a temperatura ambiente con 2 x solución de lavado y dos veces durante 15 mir ambiente con 0,5 x lavado antes de remojarla solución de lavado. Equilibrar la membrana durante 2 min en un ampón d durante 30 min en una solución de bloqueo al 1 % (1 g de reactiv de blog leo disuelto en 100 ml de tampón de ácido maleico) esterilizada. Incubar la membra a ambiente con anticuerpos tempe travajo de 1:5 000 (150 unidades anti-DIG conjugados con fosfatasa alcalina en una concent litro-1) en una solución de bloqueo al 1 % (p/v) durante 30 m Lavar la membrana dos veces durante 15 min con tampón de lavado, y equilibrar durante mpón de detección (100 mM Tris-HCl, 2 min con 100 mM NaCl, pH 9.5). La solución de sustrato s prepara ezclando una solución de 45 ul NBT (75 mg ml⁻¹ sal de nitroazul de tetrazolio en un 74 Iformamida) y una solución de 35 ul BCIP dimer (50 mg ml⁻¹ 5-bromo-4cloro-3indol fosfat plutuma en un 100 % de dimetilformamida) en 10 ml , sal de de tampón de detección. Después de la in subación on el sustrato detener la reacción lavando con agua.

Este método fue 100 veces más sen, ble cara l'AT-PCR usando el ensayo de Wetzel *et al.* (1991) (Olmos, Bertolini y Cambra, 2002). He validado en la prueba del anillo de DIAGPRO y tuvo una precisión del 94 % (Cambra et al., 2006) Olmos *et al.*, 2007).

3.3.4 Transcripción aver a en tiempo real de la reacción en cadena de la polimerasa

La RT-PCR en tie appreal a pur le llevar a cabo tanto mediante la prueba de TaqMan como con la del SYBR Green Lose han descrite dos métodos de TaqMan para la detección universal del PPV (Schneider *et al.*, 2004 y Orno *et al.*, 2005). En el primer ensayo se utilizaron los cebadores y la sonda TaqMan que se especifican a Schneider *et al.* (2004):

Cebador directo (5'-CCA ATA AAG CCA TTG TTG GAT C-3')

Cebador inverso (5'-TGA ATT CCA TAC CTT GGC ATG T-3')

Sonda TaqMan (5'-FAM-CTT CAG CCA CGT TAC TGA AAT GTG CCA-TAMRA-3').

La composición de la mezcla de reacción de 25 µl es la siguiente: 1 × mezcla de reacción (0,2 mM de cada uno de los dNTP y 1,2 mM de MgSO₄); 200 nM de los cebadores directos e inversos; 100 nM de sonda TaqMan; 4,8 mM de MgSO₄; 0,5 µl de *RT/Platinum*® *Taq Mix* (equipo *Superscript*™ *One-Step RT-PCR with Platinum*® *Taq*¹; Invitrogen) y 5 µl de molde de ARN. El proceso de RT-PCR se efectúa en las siguientes condiciones de termociclado: 15 min a 52 °C, 5 min a 95 °C, 60 ciclos de 15 s a

_

¹ El uso de la marca Invitrogen para el equipo *Superscript*[™] *One-Step RT-PCR with Platinum*[®] *Taq* en este protocolo de diagnóstico no implica su aprobación ni la exclusión de otros que también puedan ser adecuados. Esta información se ofrece únicamente para ayudar a los usuarios de este protocolo y no constituye un aval por parte de la CMF del producto químico, el reactivo o el equipo mencionados. Pueden usarse otros productos equivalentes si se demuestra que permiten obtener los mismos resultados.

95 °C, y 30 s a 60 °C. Los productos obtenidos tras la PCR se analizan en tiempo real según las instrucciones del fabricante del equipo.

El método de Schneider *et al.* (2004) se evaluó analizando extractos de PPV de los Estados Unidos, las cepas PPV-C, PPV-D, PPV-EA y PPV-M, así como otras ocho especies víricas distintas. Este método resultó específico y capaz de detectar sistemáticamente ARN vírico de entre 10-20 fg (Schneider *et al.* 2004). También podría detectar PPV en diversos hospedantes, así como en las hojas, tallos, yemas y raíces de *P. persica*.

En el segundo ensayo se utilizaron los cebadores y la sonda TaqMan que se especifican en Olmos *et al.* (2005):

Cebador P241 (5'-CGT TTA TTT GGC TTG GAT GGA A-3')

Cebador P316D (5'-GAT TAA CAT CAC CAG CGG TGT G-3')

Cebador P316M (5'-GAT TCA CGT CAC CAG CGG TGT G-3')

Sonda PPV-DM (5'-FAM-CGT CGG AAC ACA AGA AGA CGA AA AGA-TAMRA-3').

La composición de la mezcla de reacción de 25 µl es la siguiente: 1 µM o cebador 241; 0,5 µM de cada uno de los cebadores P316D y P316M; 200 nM de sonda Taq n Universal PCR Master Mix (Applied Biosystems)²; 1 × MultiScribe and RNase I ix (Applied Biosystems)³ y 5µl de molde de ARN. El proceso RT-PCR se efectúa en las sig diciones de termociclado: entes col 30 min a 48 °C, 10 min a 95 °C, 40 ciclos de 15 s a 95 °C, 60 s a 60 rápido enfriamiento hasta alcanzar la temperatura ambiente. Los productos obtenidos **PCR** nalizan en tiempo real según las instrucciones del fabricante.

El método de Olmos et al. (2005) se evaluó utilizar o tres extra os de PPV-D y tres de PPV-M y resultó ELISA u ando el anticuerpo monoclonal 5B-IVIA. ser 1 000 veces más sensible que el análisis DAS El porcentaje de positivos reales (númer tivos eales diagnosticados mediante la técnica aplicada/número de plantas infectadas po ntineados correctamente mediante la técnica de RT-PCR en tiempo real usando TagMan (O mos et al 2005) y ácido nucleico purificado fue del 97,5 % iempo real usando muestras manchadas, el 91,5 % frente al 93,6 % obtenido mediante RCR ep obtenido mediante la inmunocaptura R el 86.6 % mediante DASI-ELISA usando el anticuerpo monoclonal 5B-IVIA (Capote

Varga y James (2005) d'scribieron una técnica basada en la prueba del SYBR Green I para detectar PPV e identificar, al mis no riempo, las cepas D y M:

```
P1 (5'-ACT ACA CTC CC-3')
```

PPV J (5'-Z GA AGG CAG CAG CAT TGA GA-3')

PPV-FL 5'-TCA ACG ACA CCC GTA CGG GC-3')

PPV-FM (SGGT GCA TCG AAA ACG GAA CG-3')

PPV-RR (5'-CTC TTC TTG TGT TCC GAC GTT TC-3').

Para asegurar la correcta realización del ensayo podrán incluirse los siguientes cebadores de control interno:

Nad5-F (5'-GAT GCT TCT TGG GGC TTC TTG TT-3')

Nad5-R (5'-CTC CAG TCA CCA ACA TTG GCA TAA-3').

² El uso de la marca Applied Biosystems para la *TaqMan Universal PCR Master Mix* y la *MultiScribe and RNase Inhibitor Mix* en este protocolo de diagnóstico no implica su aprobación ni la exclusión de otros productos que también puedan ser adecuados. Esta información se ofrece únicamente para ayudar a los usuarios de este protocolo y no constituye un aval por parte de la CMF del producto químico, el reactivo o el equipo mencionados. Pueden usarse otros productos equivalentes si se demuestra que producen los mismos resultados.

³ Véase la nota al pie.número.2.

Se usa un protocolo de RT-PCR de dos fases. La composición de la reacción de RT es la siguiente: 2 μl de 10 μM de cebador P1; 2 μl de 10 μM de cebador Nad5-R; 4 μg de ARN total y 5 μl de agua. Incubar durante 5 min a 72 °C colocándola en hielo. Añadir 4 μl de 5 × tampón de primera cadena (Invitrogen)⁴; 2 μl de 0,1 M de DTT; 1 μl de 10 mM de dNTP; 0,5 μl de *RNaseOUT*TM (40 unidades μl⁻¹) (Invitrogen)⁵; 1 μl de *Superscript* [™] *II* (Invitrogen)⁶ y 2,5 μl de agua. Incubar a 42 °C durante 60 min, seguidos de 5 min a 99 °C. La composición de la reacción de mezcla de la PCR de 25 μl es la siguiente: 400 nM de cebador PPV-U; 350 nM de cebador PPV-FM; 150 nM de cebador PPV-FD; 200 nM de cebador PPV-RR; 100 nM de cebador Nad5-F; 100 nM de cebador Nad5-R; 200 μM de dNTP; 2 mM de MgCl₂; 1 × tampón Karsai (Karsai *et al.*, 2002); SYBR Green I de 1:42 000 (Sigma)⁷ y 0,1 μl de *Platinum* [®] *Taq DNA high fidelity polymerase* (Invitrogen)⁸. Verter la mezcla de la reacción junto con 1 μl de ADNc diluido (1:4) en un tubo PCR estéril. El proceso de PCR se efectúa en las siguientes condiciones de termociclado: 2 min a 95 °C, 39 ciclos de 15 s a 95 °C y 60 s a 60 °C. El análisis de la curva de fusión se ha realizado mediante incubación de 60 °C a 95 °C a 0,1 °C s⁻¹ ajustando la curva suavizada a un promedio de 1 punto. Aplicando las condiciones de Varga y James (2005), las temperaturas de fusión de cada producto son:

Detección universal de PPV (fragmento de 74 bp): 80,08-81,52 °

Cepas D (fragmento de 114 bp): 84,3-84,43 °C

Cepas M (fragmento de 380 bp): 85,34-86,11 °C

Control interno (fragmento de 181 bp): 82,45-82,63 °C

El método de Varga y James (2005) se evaluó usando extra se de PPV C. PPV-D, PPV-EA, PPV-M y una cepa no caracterizada, en las especies *Nicotiana* y *Prunt* y.

4. Identificación de las cepas

En este apartado se describen métodos adicionales que utili an DASI-ELISA, RT-PCR, Co-RT-PCR y RT-PCR en tiempo real) para identificar les ceps de PP (véase la figura 1). La identificación de la cepa no es un componente esencial de la identificación del PPV, pero una ONPF podrá desear determinarla con el fin de ayudar a prede ir su comportamiento epidemiológico.

Debido a la variabilidad de los PPV las tecnicas que no consisten en secuenciar ni se basan en determinados ensayos PCR (veas país a lelante) podrán dar lugar a resultados erróneos para un pequeño porcentaje de extractos. En embargo, dediante las técnicas serológicas o moleculares descritas a continuación (Cambrace al., 2006a; Candresse y Cambra, 2006; Capote *et al.*, 2006) es posible, en general, diferenciar los Preside tipo D y M entre sí.

⁴ El uso de la marca Invitrogen para el tampón de primera cadena, RNaseOUTTMII™, Superscript™ II y Platinum® Taq DNA high fidelity polymerase en este protocolo de diagnóstico no implica su aprobación ni la exclusión de otros que también puedan ser adecuados. Esta información se ofrece únicamente para ayudar a los usuarios de este protocolo y no constituye un aval por parte de la CMF del producto químico, el reactivo o el equipo mencionados. Pueden usarse otros productos equivalentes si se demuestra que producen los mismos resultados.

⁵ Véase la nota al pie número 4.

⁶ Véase la nota al pie número 4.

⁷ El uso de la marca Sigma para el Sybr Green I en este protocolo de diagnóstico no implica su aprobación ni la exclusión de otros que también puedan ser adecuados. Esta información se ofrece únicamente para ayudar a los usuarios de este protocolo y no constituye un aval por parte de la CMF del producto químico, el reactivo o el equipo mencionados. Pueden usarse otros productos equivalentes si se demuestra que producen los mismos resultados.

⁸ Véase la nota al pie número 4.

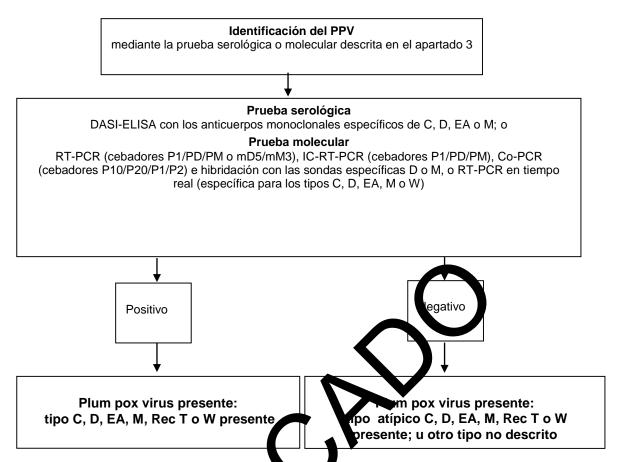


Figura 1: Métodos para identificar las cepas del

En los casos en que la ONPF exija una i entificación más confiable del tipo de PPV, podrán llevarse a cabo otras pruebas. En presencia de tipos no des ritos o atípicos también se debería determinar la secuencia completa del genoma del PPV, a secuencia total o parcial de la proteína de cobertura, P3-6K1, y los genes que codifican la proteína de inclusión citoplasmática.

4.1 Identificación ser lógica de la cepas

Según se establece en Combret al. (1994), para diferenciar los dos principales tipos de PPV (D y M) debería llevarse a cobo la pareba de DASI-ELISA usando anticuerpos monoclonales específicos de D y M (Cambra et al., 1991). Bosta et al., 1997) y siguiendo las instrucciones del fabricante.

Este método se la validado mediante la prueba del anillo de DIAGPRO; los resultados indican una precisión del 84 % per la cepa PPV-D y del 89 % para la PPV-M (Cambra *et al.*, 2006c; Olmos *et al.*, 2007). El anticuerpo monoclonal 4D es específico del PPV-D pero no reacciona con todos sus extractos. Por otra parte, el anticuerpo monoclonal utilizado para detectar el PPV-M reacciona con extractos pertenecientes a las cepas M, Rec y T, ya que estos grupos contienen la misma secuencia de proteína de cobertura. En consecuencia, para diferenciar entre los tipos M, Rec y T es necesario realizar una prueba molecular usando un anticuerpo monoclonal específico de la cepa M.

La identificación serológica de los extractos de PPV de los grupos EA y C puede realizarse mediante la prueba DASI-ELISA usando los anticuerpos monoclonales específicos de EA y/o C que se describen en Myrta *et al.* (1998, 2000). Sin embargo, es necesario validar estas pruebas.

4.2 Identificación molecular de las cepas

4.2.1 Reacción en cadena de la polimerasa con transcriptasa inversa

Las cepas PPV-D y PPV-M se identifican usando los cebadores descritos en Olmos *et al.* (1997): P1 (5'-ACC GAC ACC ACT ACA CTC CC-3')

PD (5'-CTT CAA CGA CAC CCG TAC GG-3') o PM (5'-CTT CAA CAA CGC CTG TGC GT -3').

La composición de la mezcla de reacción de 25 μ l es la siguiente: 1 μ M de cebador P1; 1 μ M de cebador PD o bien PM; 250 μ M de dNTP; 1 unidad de transcriptasa inversa AMV (10 unidades μ l⁻¹); 0,5 unidades de polimerasa de ADN Taq (5 unidades μ l⁻¹); 10 \times tampón Taq polimerasa de 2,5 μ l; 1,5 mM de MgCl₂; 0,3 % de tritón X-100, 2 % de formamida y 5 μ l de molde de RNA. El proceso RT–PCR se efectúa en las siguientes condiciones de termociclado: 45 min a 42 °C, 2 min a 94 °C, 40 ciclos de 30 s a 94 °C, 30 s a 60 °C y 1 min a 72 °C, seguido de 10 min a 72 °C como extensión final. Los productos obtenidos tras la PCR se analizan por electroforesis de gel. Los cebadores P1/PD y P1/PM producen un amplicón de 198 bp. Este método se evaluó usando seis extractos de PPV-D y cuatro de PPV-M.

El PPV-Rec se identifica usando los cebadores mD5/mM3, que son los específicos de dicha cepa descritos en Šubr, Pittnerova y Glasa (2004):

```
mD5 (5'-TAT GTC ACA TAA AGG CGT TCT C-3')
mM3 (5'-CAT TTC CAT AAA CTC CAA AAG AC-3').
```

La composición de la mezcla de reacción de 25 μ l es la siguiente (monificar la para de Šubr, Pittnerova y Glasa. 2004): 1 μ M de cada cebador; 250 μ M de dNTP; 1 unit de tran criptasa inversa AMV (10 unidades μ l⁻¹); 0,5 unidades de polimerasa de ADN Taq (5 unidades μ l⁻¹); 0× tampón de polimerasa Taq de 2,5 μ l; 2,5 mM de MgCl₂; 0,3 % de tritón X-100 y 5 μ l ARN chaído (véase el apartado 3.3). Los productos de 605 bp obtenidos tras la PCR se analizan par el cal Spresis de gel.

4.2.2 Inmunocaptura seguida de reacción el cadena de la polimerasa con retrotranscriptasa

La fase de inmunocaptura debería llevars da casa fair se describe en el apartado 3.3.2. La mezcla de reacción de la PCR se vierte directamente a los a bos PCR. Para diferenciar las cepas PPV-D y PPV-M se procede tal como se describe en el apartado 42.1.

4.2.3 Transcripción inversa cooperativa, reacción en cadena de la polimerasa

Para identificar las cepas P V-D o RW M se debería proceder tal como se indica en la sección 3.3.3 usando sondas marcada con D'G en el extremo 3' y específicas de las cepas D y M (Olmos, Bertolini y Cambra, 2002):

```
Sonda especifica de PVV-D: 5'-CTT CAA CGA CAC CCG TAC GGG CA-DIG-3' Sond especifica de PPV-M: 5'-AAC GCC TGT GCG TGC ACG T-DIG-3'.
```

La fase de hibridación y la previa a ella, se llevan a cabo a 50 °C con tampones estándares de hibridación previa e hibridación y un 30 % o 50 % de formamida (para identificar las cepas PPV-D o PPV-M, respectivamente). La solución de bloqueo se usa al 2 % (p/v).

4.2.4 Transcripción inversa en tiempo real, reacción en cadena de la polimerasa

En particular, las cepas PPV-D y PPV-M se identifican mediante la prueba química del SYBR Green I tal como se describe en Varga y James (2005) (véase el apartado 3.3.4) o mediante el método de TaqMan descrito en Capote *et al.* (2006).

Los cebadores y las sondas TagMan que se usan en el método descrito en Capote et al. (2006) son

Cebador PPV-MGB-F (5'-CAG ACT ACA GCC TCG CCA GA-3')

Cebador PPV-MGB-R (5'-CTC AAT GCT GCC TTC AT-3')

Sonda MGB-D (5'-FAM-TTC AAC GAC ACC CGT A-MGB-3')

Sonda MGB-M (5'-FAM-TTC AAC AAC GCC TGT G-MGB-3').

La composición de la mezcla de reacción de 25 μl es la siguiente: 1 μM de cada cebador; 150 nM de sonda MGB-D o MGB-M marcadas con FAM; 1 × *TaqMan Universal PCR Master Mix*⁹ (Applied Biosystems), 1 × *MultiScribe and RNase Inhibitor Mix*¹⁰ (Applied Biosystems) y 5 μl de molde de ARN. El proceso de transcripción inversa y reacción en cadena de la polimerasa se efectúa en las siguientes condiciones de termociclado: 30 min a 48 °C, 10 min a 95 °C, 40 ciclos de 15 s a 95 °C y 60 s a 60 °. Los productos obtenidos tras la PCR se analizan en tiempo real según las instrucciones del fabricante. Este método se evaluó usando 12 extractos de la cepa PPV-D y 12 más de la PPV-M, así como 14 muestras infectadas por ambas cepas a la vez.

En particular, las cepas PPV-C, PPV-EA y PPV-W se identificaron usando SYBR Green I tal como describe el método de Varga y James (2006). Los cebadores que se utilizan para aplicar esta técnica son:

P1 (5'-ACC GAC ACC ACT ACA CTC CC-3')
PPV-U (5'-TGA AGG CAG CAG CAT TGA GA-3')
PPV-RR (5'-CTC TTC TTG TGT TCC GAC GTT TC-3').

Para asegurar la correcta realización del ensayo se podrán incluir los siguentes ceredores de control interno:

Nad5-F (5'-GAT GCT TCT TGG GGC TTC TTG TT-3')
Nad5-R (5'-CTC CAG TCA CCA ACA TTG GCA T. 4-3')

La composición de la reacción de RT-PCR de 25 µl es la si iente: e una solución acuosa 1:10 (v/v) de ARN extraído (véase el apartado 3.3) y 22,5 µl de m a. La composición de la mezcla maestra es la siguiente: 2,5 µl de tampón Karsai (Karsai et d (002); 0,5 µl de cada uno de los 5 µM cebadores de PPV-U, PPV-RR o P1, Nad5R y Na .5F; 0,5 μl e 10 mM de dNTP; 1 µl de 50 mM de MgCl₂; 0,2 μ l de *RNaseOUT* (40 unidades μ l[□], I vitrogen); 0,1 μ l de *Superscript*[™] *III* (200 unidades polymerase (5 unidades μl⁻¹, Invitrogen)¹³; μl⁻¹, Invitrogen)¹²; 0,1 μl de *Platinum*® Taq Di fidelit y 1 µl de SYBR Green I (Sigma)¹⁴ de 1:5 F, pH 7,5) en 16,1 μl de agua. La reacción se efectúa 00 (en) en las siguientes condiciones de termocidado: 10 min a 50 °C, 2 min a 95 °C, 29 ciclos de 15 s a 95 °C y 60 s a 60 °C. El análisis de la curva le f vión se eva a cabo mediante la incubación de 60 °C a 95 °C iustanco la curva suavizada a un promedio de 1 punto. Siguiendo a una velocidad de fusión de 0,1 °C s⁻¹ 200d las temperaturas de fusión de cada producto son: las condiciones de Varga y Ja

Cepa C (fragment de 74 bp), 9,84 °C Cepa EA (fragment de 74 bp): 81,27 °C

⁹ El uso de la ma la April Dosystems para la *TaqMan Universal PCR Master Mix* y *MultiScribe* y la *RNase Inhibitor Mix* en est protocolo de diagnóstico no implica su aprobación ni la exclusión de otros productos que también puedan ser ade gados. Esta información se ofrece únicamente para ayudar a los usuarios de este protocolo y no constituye un aval por parte de la CMF del producto químico, el reactivo o el equipo mencionados. Pueden usarse otros productos equivalentes si se demuestra que permiten obtener los mismos resultados.

¹⁰ Véase la nota al pie número 9.

¹¹ El uso de la marca Invitrogen para RNaseOUTTM, SuperscriptTM II y Platinum[®] Taq DNA high fidelity polymerase en este protocolo de diagnóstico no implica su aprobación ni la exclusión de otros que también puedan ser adecuados. Esta información se ofrece únicamente para ayudar a los usuarios de este protocolo y no constituye un aval por parte de la CMF del producto químico, el reactivo o el equipo mencionados. Pueden usarse otros productos equivalentes si se demuestra que producen los mismos resultados.

¹² Véase la nota al pie número 11.

¹³ Véase la nota al pie número 11.

¹⁴ El uso de la marca Sigma para el Sybr Green I en este protocolo de diagnóstico no implica su aprobación ni la exclusión de otros que también puedan ser adecuados. Esta información se ofrece únicamente para ayudar a los usuarios de este protocolo y no constituye un aval por parte de la CMF del producto químico, el reactivo o el equipo mencionados. Pueden usarse otros productos equivalentes si se demuestra que producen los mismos resultados.

Cepa W (fragmento de 74 bp): 80,68 °C.

Este método se evaluó usando un extracto de cada una de las cepas PPV-C, PPV-D, PPV-EA y PPV-W.

5. Registros

Es necesario conservar los registros enumerados en el apartado 2.5 de la NIMF 27.

En las situaciones en que los resultados del diagnóstico puedan repercutir sobre otras partes contratantes, en concreto en casos de incumplimiento o en zonas donde se detecta el virus por primera vez, se debería conservar también el siguiente material adicional:

- La muestra original (etiquetada adecuadamente para facilitar la rastreabilidad), que debe conservarse congelada a -80 °C o liofilizada y mantenida a temperatura ambiente.
- Cuando proceda, deberían conservarse extractos de ARN a -80 °C y/o extractos de plantas manchadas o impresos de secciones histológicas en membranas de para mailon a temperatura ambiente.
- Cuando proceda, los productos de la amplificación mediante RT-PCI deberían onservarse a una temperatura de -20 °C.

6. Puntos de contacto para información adicional

- APHIS PPQ PHP RIPPS, Laboratorio de Diagnóstico Mondalar, BASC Building 580, Powder Mill Road, Beltsville, Maryland 20705, Estados Unidos de Austica (Dr. Laurene Levy, correo electrónico: Laurene.Levy@aphis.usdozw; Tel.: +1 3015045700; Fax: +1 3015046124).
- Equipo de virología del Instituto Nacional de la Il vestigación Ágronómica de Francia (INRA), Centro de Burdeos, UMR GD2P, IBVM, BPC 338, 3 Villónave d'Ornon Cedex, Francia (Dr. Thierry Candresse, correo electrónico: te@ordeaux inra.fr; Tel.: +33 557122389; Fax: +33 557122384).
- Facultad de Horticultura, Departamento de Patolog I. Vegetal, Universidad de Corvinus, Villányi út 29-43, H-1118 Budapest, Hungría Dr. 1882 alkovics, correo electrónico: laszlo.palkovics@unicorvinus.hu; Tel.: +36 14825438 Fax: +36 14825023).
- Instituto de Virología, Académia Estava a de Ciencias, Dúbravská, 84505 Bratislava, Eslovaquia (Dr. Miroslav Glasa, preo electrónico: virumig@savba.sk; Tel.: +421 259302447; Fax: +421 254774284).
- Instituto Valenciaro a Investigar ones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología. Carretera Mono da-Naciera km 5, 46113 Moncada, Valencia, España (Dr. Mariano Cambra, correo electró aco. ... ambra@ivia.es; Tel.: +34 963424000; Fax: +34 963424001).
- Instituto de Virolog Vegetal del CNR, sección de Bari, via Amendola 165/A, I-70126 Bari, Italia (Dr. Donato Boscia, correo electrónico: d.boscia@ba.ivv.cnr.it; Tel.: +39 0805443067; Fax: +39 0805442911).
- Laboratorio de Sidney, Agencia de Inspección Alimentaria de Canadá (CFIA), Columbia Británica, V8L 1H3 Sidney, Canadá (Dr. Delano James, correo electrónico: Delano.James@inspection.gc.ca; Tel.: +1 250 3636650; Fax: +1 250 3636661).
- Laboratorio de Virología, Centro Técnico Interprofesional de Frutas y Verduras (CTIFL), BP21 Lanxade, F-24130 La Force, Francia (Dr. Pascal Gentit, correo electrónico: gentit@ctifl.fr; Tel.: +33 553580005; Fax: +33 553 581742).

7. Agradecimientos

El presente protocolo de diagnóstico fue redactado por los doctores M. Cambra, A. Olmos y N. Capote, IVIA (véase el apartado anterior), el Sr. N.L. Africander, Departamento Nacional de Agricultura, Actividad Forestal y Pesca, Private Bag X 5015, Stellenbosch, 75999, Sudáfrica; Dr. L. Levy (véase el apartado anterior); el Dr. S.L. Lenardon, IFFIVE-INTA, Cno. 60 Cuadras Km 51/2, Córdoba

X5020ICA, Argentina; el Dr. G. Clover, Laboratorio Fitosanitario y Medioambiental, Ministerio de Agricultura y Silvicultura, PO Box 2095, Auckland 1140, Nueva Zelandia; y la Sra. D. Wright, Grupo Fitosanitario, Laboratorio de Central de Ciencia, Sand Hutton, York YO41 1LZ, Reino Unido.

8. Referencias

La presente norma refiere a las Normas Internacionales para Medidas Fitosanitarias (NIMF). Las NIMF se encuentran disponibles en el Portal fitosanitario internacional (PFI) en https://www.ippc.int/core-activities/standards-setting/ispms.

- Barba, M., Hadidi. A., Candresse. T. y Cambra, M. 2011. *Plum pox virus. En:* A. Hadidi, M. Barba, T. Candresse y W. Jelkmann, eds. *Virus and virus-like diseases of pome and stone fruits*, Capítulo 36. St. Paul, MN, APS Press. 428 págs.
- Boscia, D., Zeramdini, H., Cambra, M., Potere, O., Gorris, M. T., Myrta, A., DiTerlizzi, B. y Savino, V. 1997. Production and characterization of a monoclonal antibody specific to the M serotype of plum pox potyvirus. *European Journal of Plant Pathology* 177-480.
- **CABI.** 2011. Compendio de protección de cultivos. http://www.cabi.org/obc/, últim acceso el 26 de octubre de 2011.
- Cambra, M., Asensio, M., Gorris, M. T., Pérez, E., Camarasa, E., Garría, J. Joya, J. J., López-Abella, D., Vela, C. y Sanz, A. 1994. Detection of plan pox phyvirus using monoclonal antibodies to structural and non-structural proteins. *Bulletin EPP/ELPO Bulletin*, 24: 569-577.
- Cambra, M., Boscia, D., Myrta, A., Palkovics, L., Navrá, M., Bar, M., Gorris, M. T. y Capote, N. 2006a. Detection and characterization of Plumbox serological methods. *Bulletin OEPP/EPPO Bulletin*, 36: 254-261.
- Cambra, M., Capote, N., Myrta, A. y Llácer, G. 2006b. *Jum pox virus* and the estimated costs associated with sharka disease. *Bulletin OE P/EPPO Bulletin*, 36: 202-204
- Cambra, M., Capote, N., Olmos, A., Boton, L., Caris, M. T., Africander, N. L., Levy, L., Lenardon, S. L., Clover, G. y Wight, D. 006b. Proposal for a new international protocol for detection and identification of *Plua pox viri*. Validation of the techniques. *Acta Horticulturae*, 781: 181-191.
- Candresse, T. y Cambra, M. 2006. C usal agent of sharka disease: historical perspective and current status of *Plum pox vi* as stra. *B lletin OEPP/EPPO Bulletin*, 36: 239-246.
- Capote, N., Bertolini, V., Olmos, A., Vidal, E., Martínez, M. C. y Cambra, M. 2009. Direct sample preparation methods or detection of *Plum pox virus* by real-time RT-PCR. *International Microbiology* 1.1-6.
- Capote, N., Garis, N. T., Martínez, M. C., Asensio, M., Olmos, A. y Cambra, M. 2006. Interference between L. a.d. M types of *Plum pox virus* in Japanese plum assessed by specific monoclonal antibodies and quantitative real-time reverse transcription-polymerase chain reaction. *Phytopathology*, 96: 320-325.
- Damsteegt, V. D., Scorza, R., Stone, A. L., Schneider, W. L., Webb, K., Demuth, M. y Gildow, F. E. 2007. *Prunus* host range of *Plum pox virus* (PPV) in the United States by aphid and graft inoculation. *Plant Disease*, 91: 18-23.
- **Damsteegt, V. D., Waterworth, H. E., Mink, G. I., Howell, W. E. y Levy, L**. 1997. *Prunus tomentosa* as a diagnostic host for detection of *Plum pox virus* and other *Prunus* viruses. *Plant Disease*, 81: 329-332.
- Desvignes, J. C. 1999. Virus diseases of fruit trees. Paris, CTIFL, Centr'imprint. 202 págs.
- **EPPO.** 2004. Diagnostic protocol for regulated pests: *Plum pox virus. Bulletin OEPP/EPPO Bulletin*, 34: 247-256.
- **EPPO.** 2006. Current status of *Plum pox virus* and sharka disease worldwide. *Bulletin OEPP/EPPO Bulletin*, 36: 205-218.
- García, J. A. y Cambra, M. 2007. Plum pox virus and sharka disease: Plant Viruses, 1: 69-79.

- **Gentit, P.** 2006. Detection of *Plum pox virus:* biological methods. *Bulletin OEPP/EPPO Bulletin*, 36: 251-253.
- **James, D. y Glasa, M.** 2006. Causal agent of sharka disease: New and emerging events associated with *Plum pox virus* characterization. *Bulletin OEPP/EPPO Bulletin*, 36: 247-250.
- **Karsai, A., Müller, S., Platz, S. y Hauser, M. T.** 2002. Evaluation of a homemade SYBR Green I reaction mixture for real-time PCR quantification of gene expression. *Biotechniques*, 32: 790-796.
- **Levy, L. y Hadidi, A.** 1994. A simple and rapid method for processing tissue infected with plum pox potyvirus for use with specific 3' non-coding region RT-PCR assays. *Bulletin OEPP/EPPO Bulletin*, 24: 595-604.
- Myrta, A., Potere, O., Boscia, D., Candresse, T., Cambra, M. y Savino, V. 1998. Production of a monoclonal antibody specific to the El Amar strain of plum pox virus. *Acta Virologica*, 42: 248-250.
- Myrta, A., Potere, O., Crescenzi, A., Nuzzaci, M. y Boscia, D. 2000. Production of two monoclonal antibodies specific to cherry strain of plum pox virus (PPV-C). Jurnal & Plant Nutrition, 82 (supl. 2): 95-103.
- Olmos, A., Bertolini, E. y Cambra, M. 2002. Simultaneous and or open tional implification (Co-PCR): a new concept for detection of plant viruses. *Journal of Virol vicial Methods*, 106: 51-59.
- Olmos, A., Bertolini, E., Gil, M. y Cambra, M. 2005. Real-tine assay for quantitative detection of non-persistently transmitted Plum pox virus RNA tarsets in single arends. *Journal of Virological Methods*, 128: 151-155.
- Olmos, A., Cambra, M., Dasi, M. A., Candresse, T., Estebay, O., Gorris, M. T. y Asensio, M. 1997. Simultaneous detection and typing of plum rox potyvirus (PPV) isolates by heminested-PCR and PCR-ELISA. *Journal of Virological Methols*, 68: 120137.
- Olmos, A., Capote, N., Bertolini, E. y Cambra, M. 200. Molecular diagnostic methods for plant viruses. En: Z. K. Punja, S. Del oer y Samacon, eds. *Biotechnology and plant disease management*. pp. 227-249. Wallin ford, UK. Cambridge, USA, CAB International. 574 págs.
- **Osman, F. y Rowhani, A.** 2006. Application of a spotting sample preparation technique for the detection of pathogens in wood plants by RT-PCR and real-time PCR (TaqMan). *Journal of Virological Methods*, 133, 130-1.5.
- PaDIL. 2011. http://old.p.dil.gov.au/pb..., último acceso 26 de octubre de 2011.
- Schneider, W. L., Shell van J. J., Stone, A. L., Damsteegt, V. D. y Frederick, R. D. 2004. Specific detection and a particular sation of *Plum pox virus* by real-time fluorescent reverse transcription-PCR. *Journal of Virol gical*. *Mods*, 120: 97-105.
- **Šubr, Z., Pittne ov., S., Lasa, M.** 2004. A simplified RT-PCR-based detection of recombinant *Plum pox virus* ise stes. *Acta Virologica*, 48: 173-176.
- Ulubaş Serçe, Ç., Candresse, T., Svanella-Dumas, L., Krizbai, L., Gazel, M. y Çağlayan, K. 2009. Further characterization of a new recombinant group of *Plum pox virus* isolates, PPV-T, found in the Ankara province of Turkey. *Virus Research*, 142: 121-126
- **Varga, A. y James, D.** 2005. Detection and differentiation of *Plum pox virus* using real-time multiplex PCR with SYBR Green and melting curve analysis: a rapid method for strain typing. *Journal of Virological Methods*, 123: 213-220.
- **Varga, A. y James, D.** 2006. Real-time RT-PCR and SYBR Green I melting curve analysis for the identification of *Plum pox virus* strains C, EA, and W: Effect of amplicon size, melt rate, and dye translocation. *Journal of Virological Methods*, 132: 146-153.
- Wetzel, T., Candresse, T., Macquaire, G., Ravelonandro, M. y Dunez, J. 1992. A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection. *Journal of Virological Methods*, 39: 27-37.
- Wetzel, T., Candresse, T., Ravelonandro, M. y Dunez, J. 1991. A polymerase chain reaction assay adapted to plum pox potyvirus detection. *Journal of Virological Methods*, 33: 355-365.

Historia de la publicación

Esta no es una part ofir a de la ... Ima.

Esta historia de la publicación se refiere sólo a la versión española. Para la historia completa de la publicación consulte la versión en inglés de la norma.

2012-03 La CMF-7 adoptó el Anexo 2 de la NIMF 27.

NIMF 27. Anexo 2: Plum pox virus (2012). Roma, CIPF, FAO.

2013-03 La CMF-8 tomó nota de los cambios editoriales efectuados en español por el grupo de examen de los idiomas.

2015-09 La Secretaría de la CIPF incorporó las enmiendas a tinta en conformidad con el procedimiento de revocación de las normas aprobado por la CMF-10 (2015).

2016-01 La secretaría de la CIPF hizo un cambio editorial menor.

Última actualización de la historia de la publicación: 2016-01.

CIPF

La Convención Internacional de Protección Fitosanitaria (CIPF) es un acuerdo internacional de sanidad vegetal que tiene como objetivo proteger las plantas cultivadas y silvestres previniendo la introducción y propagación de plagas. Los viajes y el comercio internacional hoy son más abundantes que nunca antes. En el desplazamiento de personas y mercancías por todo el mundo, los acompañan organismos que representan riesgos para las plantas.

La organización

- ◆ Hay más de 180 partes contratantes de a CIPF
- Cada parte contratante tiene una organización nacional de protección fitosanitaria ONI y un contacto oficial de la CIPF
- ◆ Nueve organizaciones regionale de projección fitosanitaria (ORPF) obtan para facilitar a aplicación de la CIPF en los paras
- ◆ La CIPF se enlaction la organitaciones internacion les per hentes ann de contribuir a la creación la caracidad egional y nacional
- ◆ La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) proporciona la Secretaría de la CIPF

Convención Internacional de Protección Fitosanitaria (CIPF)

Viale delle Terme di Caracalla, 00153 Roma, Italia Tel. +39 06 5705 4812 - Fax: +39 06 5705 4819 Correo electrónico: ippc@fao.org - Web: www.ippc.int