PRAs: Tools, Resources and Key Challenges

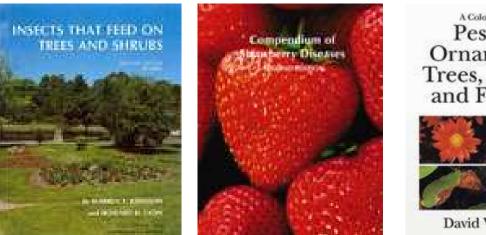
Richard Baker & Alan MacLeod Plant Health Group, Central Science Laboratory, York YO41 1LZ, UK

r.baker@csl.gov.uk a.macleod@csl.gov.uk 23rd September 2003

Outline of the Talk

- PRA: the need for tools and resources in addition to standards
- Examples of tools and resources in the different stages of pest risk assessment:
 - Pest categorisation
 - Commodity pest risk assessment for potatoes from New Zealand
 - Entry
 - *Thrips palmi* (Palm or melon thrips)
 - Establishment
 - *Diabrotica virgifera virgifera* (Western corn rootworm)
 - Economic & Environmental Impacts
 - Bemisia tabaci
 - Phytophthora ramorum
- Key Challenges

PRA Tools and Resources required as well as Standards


- ISPM 11 tells you what to do but not how to do it or where to obtain the data needed, e.g.
 - "Documented pathways for the pest to enter new areas should be noted..." (2.2.1)
 - "Climatic modelling systems may be used..." (2.2.2.2)
 - "There are analytical techniques which can be used in consultation with experts in economics...." (2.3.2.3)

Examples of resources and tools used in PRA - Pest Categorization

Resources

- Taxonomic keys
- National Species Lists
- Tools
 - electronic, e.g. CABI Compendia
- Example
 - Commodity risk analysis of ware potatoes from New Zealand

Some Sources of Information on Pests

Pests of Ornamental Trees, Shrubs and Flowers

David V Alford

ΞT.

9

Phytosanitary Alert System

Invertebrate potato pests (New Zealand)

Compile pest list		84
Pests common to NZ and UK	52	
Consider pathway and life stage	<u>17</u>	
		<u>(69)</u>
Pests for PRA		15

References, such as: Scott, R.R. (1984) (Ed.) *New Zealand pest and beneficial insects.* Lincoln University 273pp

Spiller, D.M. & Wise, K.A.J. (edited and revised by Dale, P.S. & Maddison (1982)) *A Catalogue of New Zealand insects and their host plants.* New Zealand DSIR, Bulletin 231, 260pp.

Examples of resources and tools used in PRA - Entry

Resources

- ♦ Trade import data
- Detection datasets
- Tools
 - Spreadsheets
- Example
 - UK and EU import detections

Factors determining the Probability of Entry

- Number and variety of pathways
- Association of pest with the pathway
- Survival in transit
- Probability of surviving phytosanitary procedures
- Probability of surviving cultural/industrial practices
- Transfer to a suitable host

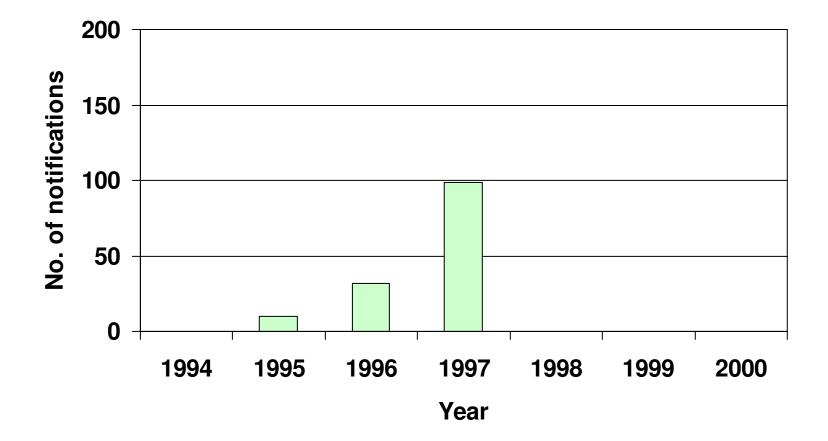
UK interceptions of *Bemisia tabaci* on Third Country produce

	CANARY ISL	GAMBIA	GHANA	ISRAEL	JORDAN	NIGERIA	SIERRA LEO	SINGAPORE	unspecified	ZIMBABWE	totals
ARTEMISIA				1							1
ASTER				1							1
CALLISTEPHUS				1							1
CHRYSOPHYLLUM						1					1
DENDRANTHEMA	6			1							7
GYPSOPHILA				5							5
HIBISCUS			1								1
HYPERICUM				5					1		6
LIMONIUM									1		1
MANIHOT		4				2	4				10
MENTHA				2							2
OCIMUM	1			2							3
ORIGANUM				4							4
PHILODENDRON								1			1
ROSA				3							3
SALVIA				2							2
SOLIDAGO	1			46					1		48
SOLIDASTER				1						1	2
TRACHELIUM				2							2
unidentified		1		1	1		1				4
totals	8	5	1	77	1	3	5	1	3	1	105

Source: Unpublished CSL data

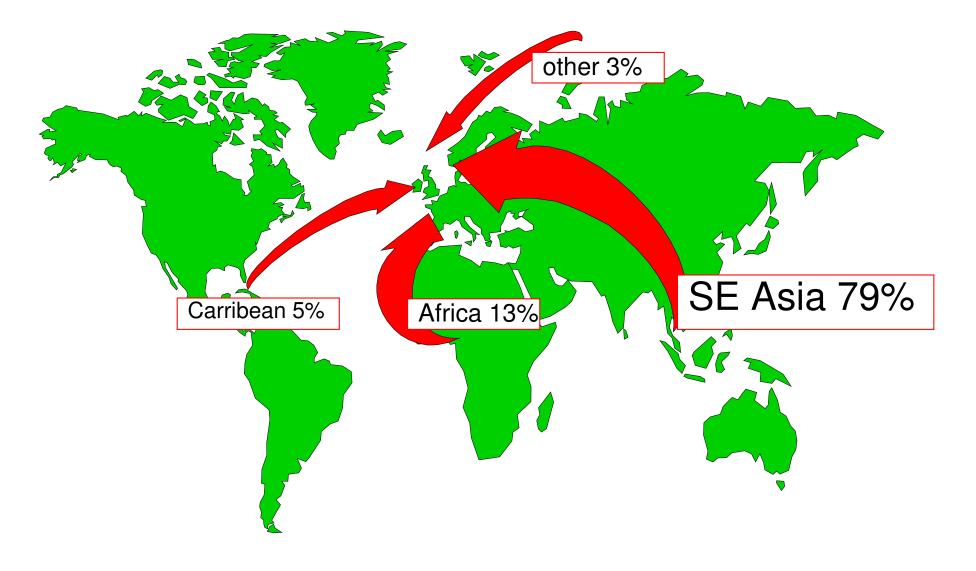
Sample TARIC code trade data

Source: COMEXT CD					
Units: Tonnes					
1993					
	JANUARY	FEBRUARY	MARCH	DECEMBER	ANNUAL
	93-01	93-02	93-03	93-12	TOTAL
001 FRANCE	298	946	711	808	24,011
002 BELGLUXBG.	60	420	432	300	
003 NETHERLANDS	1370	5720	5034	3634	42,969
004 GERMANY	0	48	23	0	1,339
005 ITALY	1911	537	252	2759	11,489
007 IRELAND	49	50	49	133	5,605
008 DENMARK	0	0	0	0	1
009 GREECE	20	168	0	0	767
010 PORTUGAL	94	87	21	274	1,670
011 SPAIN	75	80	1020	292	8,940
021 CANARY ISLANDS	4	0	0	0	4
030 SWEDEN	0	3	0	0	3
038 AUSTRIA	21	42	147	0	210
204 MOROCCO	77	59	190	3	472
212 TUNISIA	0	14	0	0	14
220 EGYPT	10556	23600	21770	1964	68,154
600 CYPRUS	3840	1023	798	3288	
624 ISRAEL	185	241	355	40	

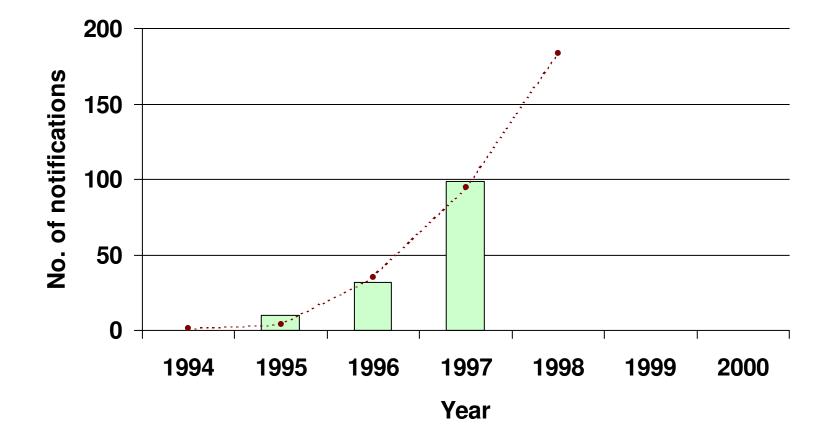

Source: COMEXT CD

Trade data: Changes over time, e.g. increased trade in cut flowers

UK consumption of cut flowers

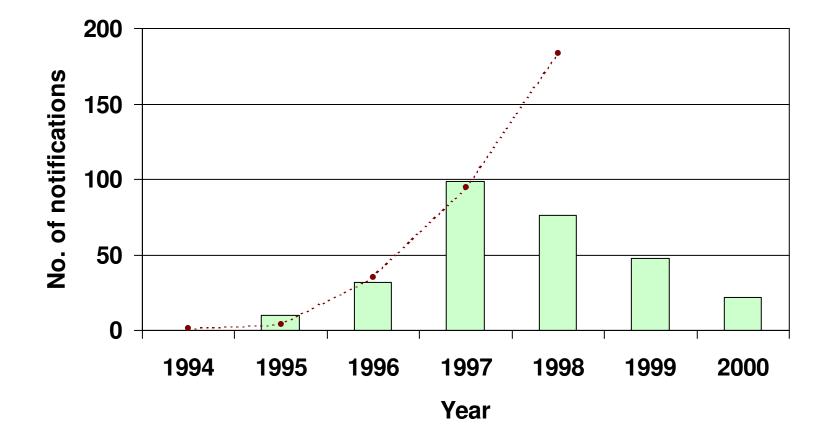

- ◆1991 50,475 tonnes
- ◆1998 102,884 tonnes
- Sources of cut flowers include: Argentina, Australia, Brazil, China, Colombia, Costa Rica, Denmark, Dominica, France, Germany, Guatemala, Hungary, India, Ireland, Israel, Italy, Japan, Kenya, Kuwait, Mexico, Netherlands, New Zealand, Norway, Portugal, Romania, Singapore, South Africa, Spain, Sri Lanka, Sweden, Taiwan, Thailand, Togo, USA

EU notifications of *Thrips palmi* on Thai orchids



Data source: EU FVO Office, Notifications of non compliance

Origins of *Thrips palmi* interceptions by EU Member States



EU notifications of *Thrips palmi* on Thai orchids

Data source: EU FVO Office, Notifications of non compliance

EU notifications of *Thrips palmi* on Thai orchids

Data source: EU FVO Office, Notifications of non compliance

Examples of resources and tools used in PRA - Establishment

Resources

- Climatic datasets
- Hosts distribution data
- Tools
 - CLIMEX
 - Geographic Information Systems (GIS)
- Example
 - ◆ Diabrotica virgifera virgifera

Factors determining the Probability of Establishment

- Ecological Factors
 - Suitability of the abiotic environment, e.g. climate
 - Presence of suitable hosts, alternate hosts and vectors
 - Natural or artificial control mechanisms
 - Cultural practices
- Intrinsic Factors
 - The pest's reproductive strategy
 - Genetic adaptability
 - Minimum population needed for establishment

Diabrotica virgifera virgifera Western corn rootworm

- Serious maize pest in northern USA and Canada
- In central Europe since 1992, August 2002 arrived near Paris
- Since first introduced into Europe, UK area of maize has risen markedly (now >100,000 ha/year)

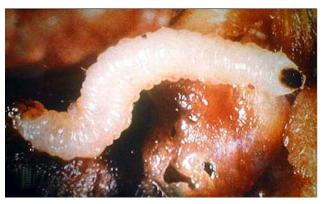
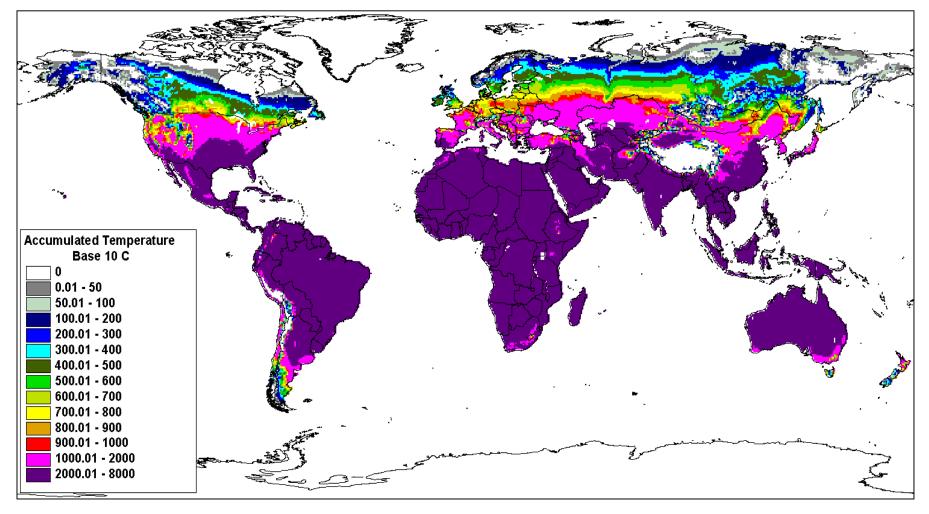


Image sources: adult) USDA-ARS, CAB International Crop Protection Compendium, 2002 Iarva) CIMMYT, CAB International Crop Protection Compendium, 2002

Root damage by D. virgifera virgifera larvae


Source: http://www.agron.missouri.edu/cgi-bin/sybgw mdb/mdb3/Species/99186

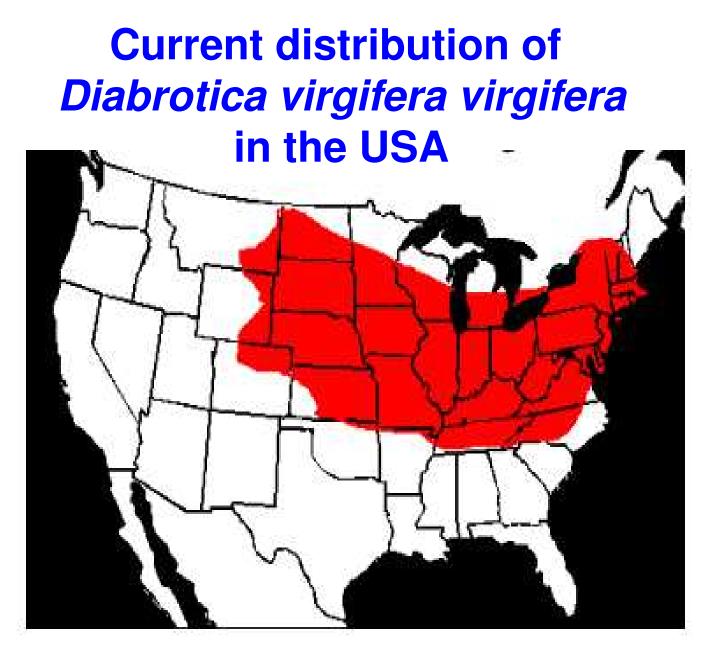
Establishment potential

- The geographic distribution and abundance of an organism that cannot control or regulate its body temperature is largely determined by climate.
- Details of the <u>climate</u> from the <u>known</u> <u>distribution</u> of an organism can help <u>predict</u> the <u>potential</u> <u>distribution</u> and abundance of the organism in new geographic regions.
- <u>Mapping</u> the <u>existing</u> <u>distribution</u> of a pest and matching the climate within that area with similar climates elsewhere can help <u>predict</u> potential <u>areas</u> <u>at</u> <u>risk</u>.

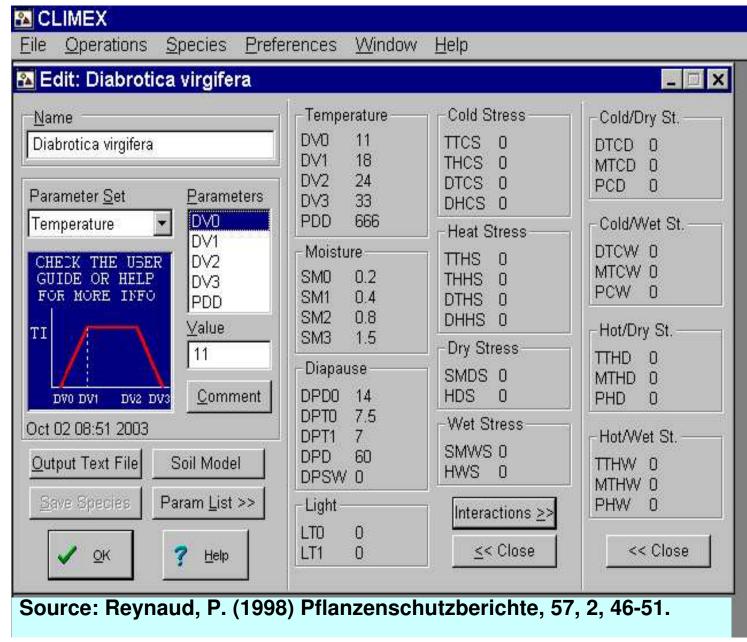
World Annual Accumulated Temperatures base 10°C for 1961-1990

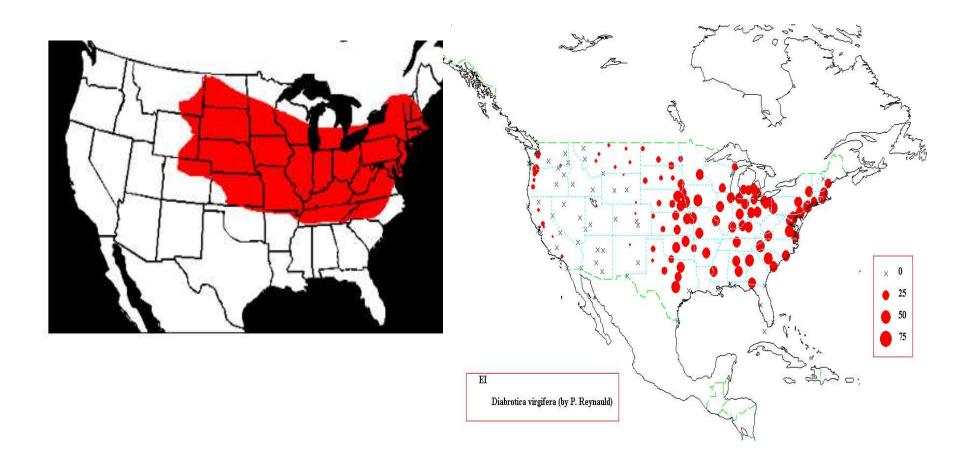
Baker, R.H.A. 2002. Predicting the limits to the potential distribution of alien crop pests. In: Invasive Arthropods in Agriculture. Problems and Solutions, Hallman, G.J. & Schwalbe, C.P. (Eds). pp. 207-241. Science Publishers Inc. Enfield USA. (Data from the Climatic Research Unit, Norwich)

CLIMEX - introduction (www.ento.csiro.au/climex/climex.html)

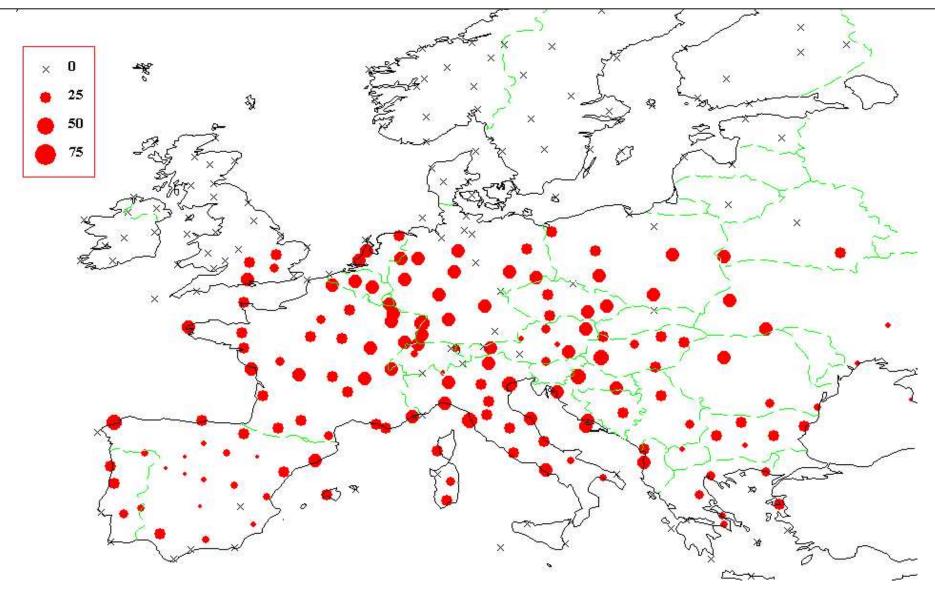

- Computer software containing long term data (30 years) from almost 3,000 locations worldwide.
- Is used to predict the effects of climate on plants and animals based on biological parameters e.g. response to temperature.
- Generates a single number the Eco-climatic Index to describe how favourable a location is for a particular species.

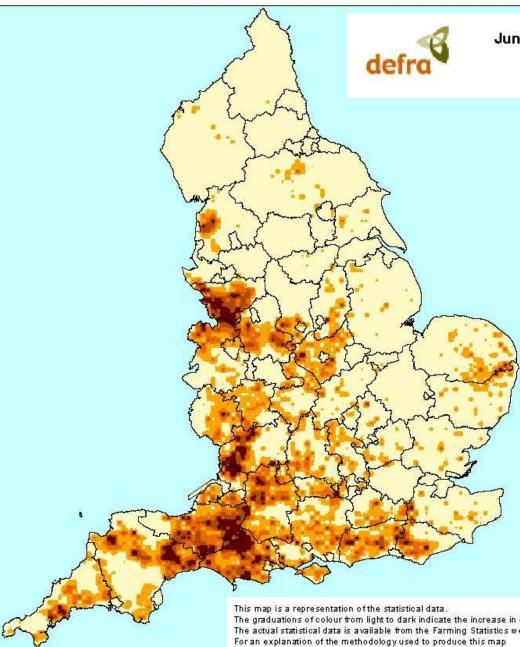
Diabrotica virgifera virgifera Establishment and spread potential


Apply CLIMEX


Look at effects of climate change

Source: http://ipmworld.umn.edu/chapters/maize/ncr_map.GIF

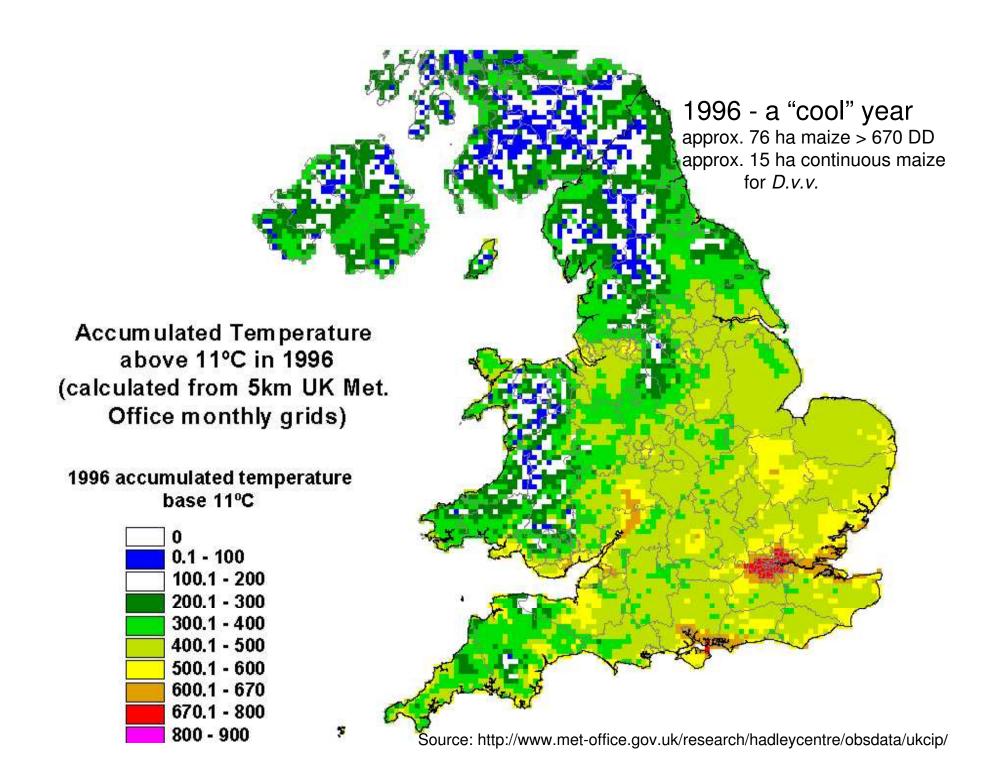

Sample CLIMEX parameter entry screen



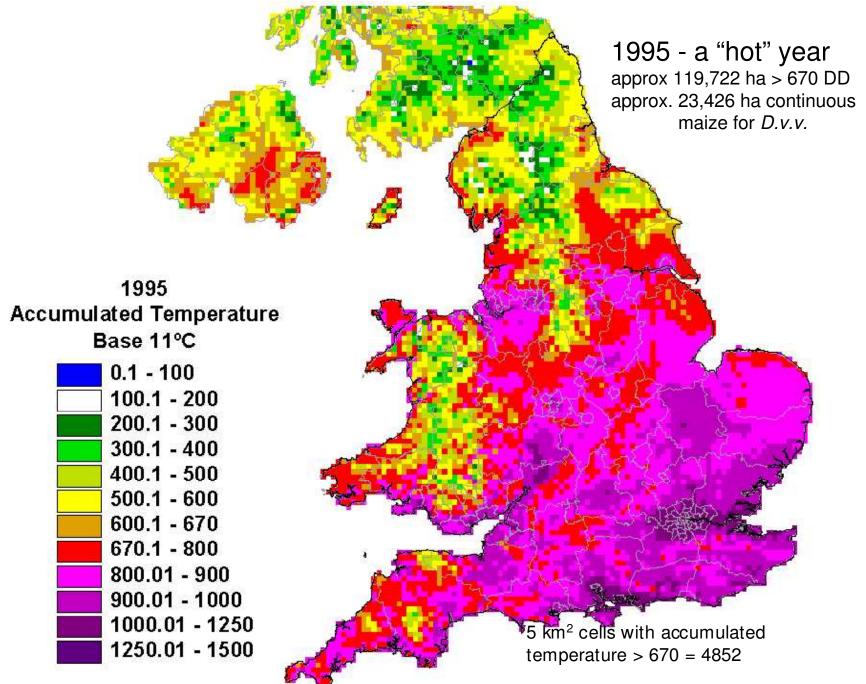
CLIMEX parameters for growth and environmental stress are estimated from *Diabrotica virgifera virgifera's* current distribution (above left) and used to generate ecoclimatic indices and a map of expected distribution in the USA (above right)

Diabrotica virgifera virgifera distribution in Europe: predicted by CLIMEX with 1931-1960 mean climatic data from 285 weather stations

June 2001 Agricultural Census ENGLAND

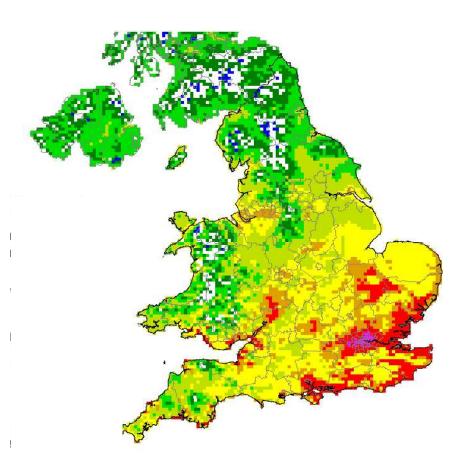

Distribution of Maize

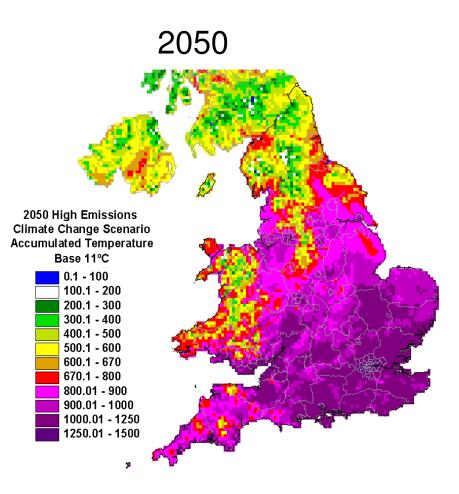
Distribution of maize in England


Source: http://farmstats.defra.gov.uk/cs/ farmstats_data/MAPS/ agricultural_atlas/ map_select.asp? year=2001&c_id=10&Submit3= Get+Map

The graduations of colour from light to dark indicate the increase in distribution density. The actual statistical data is available from the Farming Statistics web site. please refer to: http://farmstats.defra.gov.uk/cs/agricultural atlas/method.htm

(C) Crown Copyright 2002 Reproduced from the Ordnance Survey DEFRA licence no. GD 272631 Department for Environment, Food & Rural Affairs


1997 - a "typical" year approx.10,247 ha maize > 670 DD, approx. 2,049 ha continuous maize for *D.v.v*. Accumulated Temperature above 11°C in 1997 (calculated from 5km UK Met. Office monthly grids) 1997 accumulated temperature base 11°C 0 0.1 - 100 100.1 - 200 200.1 - 300 300.1 - 400 400.1 - 500 500.1 - 600 600.1 - 670 670.1 - 800 800 - 900 Source: http://www.met-office.gov.uk/research/hadleycentre/obsdata/ukcip/



Source: http://www.met-office.gov.uk/research/hadleycentre/obsdata/ukcip/

Effect of Climate Change on the Area suitable for Diabrotica virgifera virgifera establishment

1997

Source: http://www.ukcip.org.uk/scenarios/index.html

Diabrotica virgifera virgifera Establishment conclusions

- D. virgifera virgifera is currently at the edge of its range of climatic suitability in the UK
- Climate change will have an increasing impact
- The area of maize grown under continuous rotation and control practices, e.g. presence of GM maize, will influence future impacts

Examples of resources and tools used in PRA - Economic impacts

Resources

- Biological data
- Financial and Economic data
- Tools
 - Biological models
 - Financial and Economic models
 - Partial budgeting
 - Partial equilibrium analysis
- Example
 - ♦ Bemisia tabaci

Factors determining Economic Impacts

Direct Pest Effects

Yield

Quality

Cost and Efficacy of Plant Protection

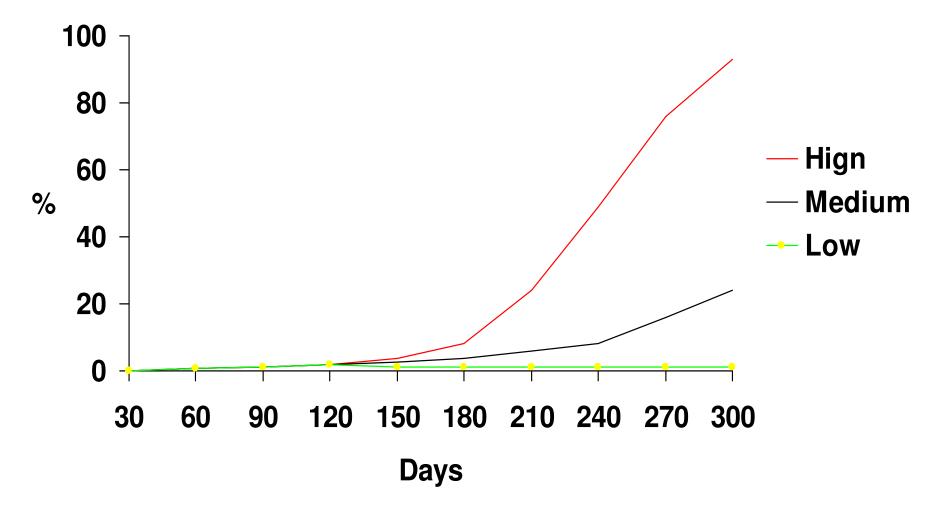
Indirect Pest Effects

- Market Access
- Environmental Effects
- Eradication, Research and Advisory costs
- Social costs e.g. tourism

Bemisia tabaci economic impact on tomato production

- Was a minor tropical pest of field crops
- In 1980s a new strain, resistant to many chemicals, & more polyphagous began to spread in trade.
- US estimates of \$500m damage annually to field and protected crops (direct and virus damage)

Gross margin budget: Tomatoes (0.1ha) £


£

Sales		30,280
Production costs	11,138	
Marketing costs	5,379	
Total variable costs		(16,517)
Gross Margin		13,763

Source: Anon (1994) An ADAS Management Budget for illustrative purposes, Tomatoes in Rockwool, December planting in the South East. In: Gross Margin Budgets 1994, Glasshouse Crops, ADAS.

% of tomato crop infested by TYLCV

Source: Morgan, D. & MacLeod, A. (1996) Assessing the economic threat of *Bemisia tabaci* (Gennadius) and tomato yellow leaf curl virus to the tomato industry in England and Wales, *BCPC*, 1996, 1077-1082.

Financial consequences (£/0.1ha)

	Standard £	Low £	Medium £	High £
Sales	30,280	29,952	28,403	22,611
Variable costs	(16,517)	(16,783)	(16,799)	(15,034)
Gross Margin	13,763	13,169	11,603	7,577
£ lost	£ 0	£ 595	£ 2,161	£ 6,187
% lost	0 %	4.3 %	15.7 %	44.9 %


Source: Morgan, D. & MacLeod, A. (1996) Assessing the economic threat of *Bemisia tabaci* (Gennadius) and tomato yellow leaf curl virus to the tomato industry in England and Wales, *BCPC*, 1996, 1077-1082.

Examples of resources and tools used in PRA - Environmental impacts

Resources

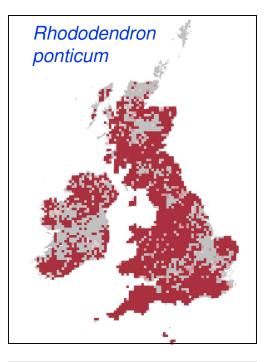
- Host distribution maps
- Special areas of conservation
- Tools
 - ♦ GIS
- Example
 - Phytophthora ramorum

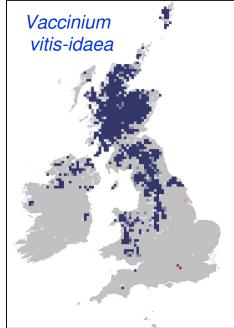
Distribution of Sudden Oak Death In USA

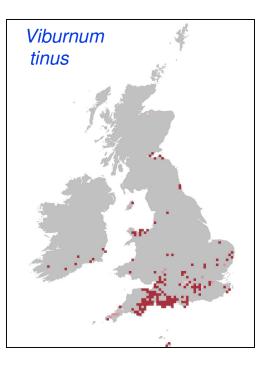
Distribution of Sudden Oak Death as of September 4, 2003

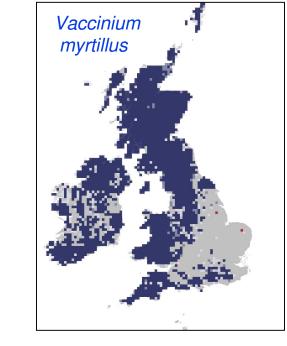
A range of symptoms can occur with *P. ramorum* infection: tree death has not been recorded in Europe

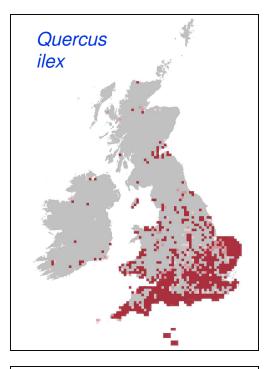
Leaf blight on *Leucothoe*


Leaf blight and die back on Pieris

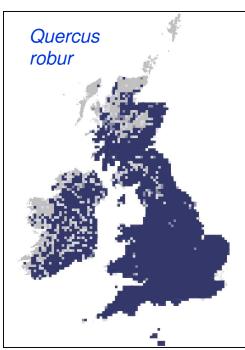

Factors influencing the impact of *P. ramorum* in the UK

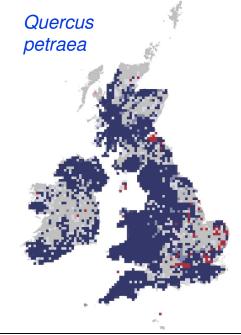

- Proximity to known evergreen hosts
 Rhododendron, *Vaccinium* (Bilberry)
- Ecological importance of the host species
- Proximity to a nursery with infected plants and presence in parks and gardens

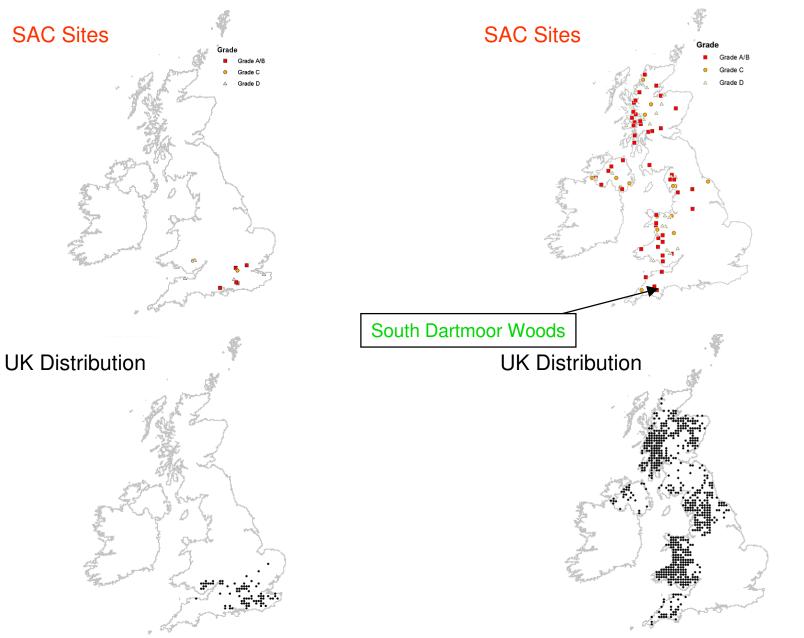

Distribution of the Principal Wild Hosts Of Phytophthora ramorum in the British Isles from the New Atlas of the British And Irish Flora 2002



Distribution of the main native and alien *Quercus* spp. in the British Isles from the New Atlas of the British


And Irish Flora 2002




SAC* Habitat Woodland with Oak, Beech, *Rhododendron* and *Vaccinium* (*P. ramorum* hosts)

Atlantic acidophilous beech Forests

- e.g. New Forest, Burnham Beeches
- Old sessile oakwoods
 - e.g. South Dartmoor Woods, Borrowdale
- * Special Areas of Conservation selected to conserve habitats listed in the EC Habitats Directive

Atlantic Acidophilous Beech Forests

Old Sessile Oakwoods

Source: http://www.english-nature.org.uk/pubs/gis/GIS_register.asp

Conclusions for Sudden Oak Death risk

- Nurseries with infection and susceptible hosts are widespread in the UK (although at low incidence)
- Rhododendron and Vaccinium occur on acid soils, especially where there is high rainfall
- Beech and oak are dominant in several woodland habitats where these hosts occur
- These woodlands include designated UK Special Areas of Conservation

PRA Tools & Resources: Conclusions

- There are many useful tools and resources which can assist in all stages of PRA production
- Logically, ISPM 11 could be accompanied by a manual describing what is available
- The development of the tools and the enhancement of the resources available for PRA needs to intensified

PRA Tools & Resources : Some Key Challenges for the Future

Entry

Access to detailed trade pathway data

Establishment

- Increasing the spatial and temporal resolution of risk maps
- Spread
 - Enhancing spread models
- Impacts
 - Scaling up from one holding to many
 - Modelling changes in impacts over time
 - Quantifying environmental impacts
- General
 - From national to regional risk assessments
 - Quality control and publication
 - Form an international network of PRA practitioners?

Acknowledgements

- Thanks are due to
 - CAB International
 - CSL management
 - EU FVO Plant Health Control Unit
 - Plant Health Division (Defra)
 - the Plant Health and Seeds Inspectorate (Defra)