international BARCODE OFLIFE

Making Every Species Count

Known biodiversity: 1.7 million species of plants and animals

Estimated biodiversity: 10 million to 100 million species

DNA barcoding is . . .

- Large-scale
- High-throughput
- Standardized

approach to identifying species using a short fragment of their DNA

The many uses of DNA barcodes

- A research tool for improving species-level taxonomy
- A tool for flagging hidden diversity
- An applied tool for identifying regulated species

Imagine...

a world in which you can know the name of

A global science project

international BARCODE OFLIFE

- ► 5 years
- 5M specimens
- ► 500K species

Official launch of iBOL – CN Tower, Toronto, September 25, 2010

iBOL launches with 1M records, 100K species

iBOL structure: participating nations

iBOL Themes

- 1. DNA Barcode Library
- 2. Methods
- 3. Informatics
- 4. Technologies
- 5. Administration
- 6. GE³LS

Theme 1: DNA Barcode Library

WG1.1 Vertebrates WG1.2 Land Plants WG1.3 Fungi WG1.4 Animal Parasites, Pathogens & Vectors WG1.5 Agricultural & Forestry Pests & Parasitoids WG1.6 Pollinators WG1.7 Freshwater Bio-Surveillance WG1.8 Marine Bio-Surveillance **WG1.9** Terrestrial Bio-Surveillance WG1.10 Polar Life

Theme 1: DNA Barcode Library

WG1.1 Vertebrates WG1.2 Land Plants WG1.3 Fungi WG1.4 Animal Parasites, Pathogens & Vectors WG1.5 Agricultural & Forestry Pests & Parasitoids WG1.6 Pollinators WG1.7 Freshwater Bio-Surveillance WG1.8 Marine Bio-Surveillance WG1.9 Terrestrial Bio-Surveillance WG1.10 Polar Life

iBOL WG 1.5

- Bringing genomics to the fight against plant pests and invasive species
- Assembling a DNA barcode reference library of pests and their parasitoids
- 2015 target: 25,000 of the most important pest species

iBOL WG 1.5 – rapid progress

iBOL WG 1.5 Agricultural and Forestry Pests and their Parasitoids

Groups	Species Targets	iBOL Progress to 31.12.10		Overall Progress to Target	
		Species	Progress	Species	Progress
True Bugs	5,000	712	14%	2,505	50%
Earwigs	100	16	16%	20	20%
Grasshoppers	500	151	30%	689	138%
Lacewings etc.	500	129	26%	277	55%
Mantises	100	9	9%	155	155%
Parasitic Flies	3,000	956	32%	1,829	61%
Parasitic Hymenoptera	8,000	2,293	29%	6,351	79%
Pest Flies	2,000	874	44%	1,699	85%
Predatory Beetles	4,000	1,515	38%	3,755	94%
Sawflies	700	80	11%	284	41%
Stick Insects	100	23	23%	29	29%
Thrips	1,000	96	10%	200	20%
Grand Total	25,000	6,854	27%	17,793	71%

Biodivers Conserv (2009) 18:3825–3839 DOI 10.1007/s10531-009-9682-7

ORIGINAL PAPER

In the dark in a large urban park: DNA barcodes illuminate cryptic and introduced moth species

Jeremy R. deWaard · Jean-François Landry · B. Christian Schmidt · Jennifer Derhousoff · John A. McLean · Leland M. Humble

Biel	Invasions
DOI	10.1007/s10530-010-9709-8

PERSPECTIVES AND PARADIGMS

Common goals: policy implications of DNA barcoding as a protocol for identification of arthropod pests

Robin Floyd · João Lima · Jeremy deWaard · Leland Humble · Robert Hanner

DNA barcoding enables the identification of caterpillars

feeding on native and alien oak

(Lepidoptera: Geometridae)

Martin M. GOSSNER & Axel HAUSMANN

OPEN a ACCESS Freely available online

🦉 PLoS one

Towards a Global Barcode Library for Lymantria (Lepidoptera: Lymantriinae) Tussock Moths of Biosecurity Concern

Jeremy R. deWaard^{1.2}", Andrew Mitchell³, Melody A. Keena⁴, David Gopurenko³, Laura M. Boykin⁶, Karen F. Armstrong⁶, Michael G. Pogue⁷, Joao Lima⁸, Robin Floyd⁸, Robert H. Hanner⁸, Leland M. Humble^{1,9}

Multilateral cooperation

Signing of MOU with UN Convention on Biological Diversity COP10, Nagoya, Japan – October 20, 2010

international BARCODE OFLIFE

Making Every Species Count