

Food and Agriculture Organization of the United Nations

International Plant Protection Convention

Department for Environment Food & Rural Affairs

Norihide Hinomoto

Professor Laboratory of Ecological Information Graduate School of Agriculture, Kyoto University, Japan

Zero Pest Damage: Potential future alternatives to chemical control

London, 21 – 23 September 2022 International Plant Health Conference

National Program "Moonshot R&D" GOAL 5 – Creation of the industry that enables sustainable global food supply by exploiting unused biological resources by 2050.

Chemical pesticides sometimes become trade barriers due to differences in regulations by countries.

The purpose of our project is to build a new pest management system with substantially less chemical pesticide use.

- Kyoto University
- NARO (National Agriculture and Food Research Organization)
- Tohoku University
- Osaka University
- Tokyo University of Agriculture and Technology
- Setsunan University
- Jikei University
- Tokyo University of Agriculture

Background

Pest damage causes crop loss

Insecticide resistance

After Sharma et al. (2017), Oerke et al. (1994)

Sparks et al. (2020)

Scope – IPM tools

Approach – 3 steps to reduce insect pests

Wide area: migratory pests
Density reduction with symbionts (incompatible insect technique)

Around fields: flying pests

Laser beam shooting

In fields: minute pests

 Surface irradiation of lasers & biological control agents (BCAs) enhanced

	Symbionts	Laser shooting	BCAs
Initial outcomes	Artificial culture of insect-symbionts in living host insects	Successful prediction of flying path of insects with AI	New genome editing method and RNA interference (RNAi) systems on BCAs
Challenges	 Culture system without living host insects Incompatible insect techniques by symbionts 	 Capturing irregular flying patterns of insects Concerns over safety and reliability 	- Genome information-based breeding and elucidation of BCAs' function

	Symbionts	Laser shooting	BCAs
Initial outcomes	Artificial culture of insect-symbionts in living host insects	Successful prediction of flying path of insects with AI	New genome editing method and RNA interference (RNAi) systems on BCAs
Challenges	 Culture system without living host insects Incompatible insect techniques by symbionts 	 Capturing irregular flying patterns of insects Concerns over safety and reliability 	- Genome information-based breeding and elucidation of BCAs' function

	Symbionts	Laser shooting	BCAs
Initial outcomes	Artificial culture of insect-symbionts in living host insects	Successful prediction of flying path of insects with Al	New genome editing method and RNA interference (RNAi) systems on BCAs
Challenges	 Culture system without living host insects Incompatible insect techniques by symbionts 	 Capturing irregular flying patterns of insects Concerns over safety and reliability 	- Genome information-based breeding and elucidation of BCAs' function

Laser beam shooting technique

Stereo camera 1024x768 pixel, 55 FPS

Spodoptera litura (Adult moth) 15-30 mm length 0.5-1.0m/s flying speed

Prediction of flight position

- Processing an image takes 0.03 sec (2 frames), and this time lag must be compensated.
- The prediction method provides flight position 2 steps ahead.

Laser beam shooting technique: simulation

	Symbionts	Laser shooting	BCAs
Initial outcomes	Artificial culture of insect-symbionts in living host insects	Successful prediction of flying path of insects with Al	New genome editing method and RNA interference (RNAi) systems on BCAs
Challenges	 Culture system without living host insects Incompatible insect techniques by symbionts 	 Capturing irregular flying patterns of insects Concerns over safety and reliability 	- Genome information-based breeding and elucidation of BCAs' function

Genome editing on Biocontrol Agents

Cell Reports Methods

Report

DIPA-CRISPR is a simple and accessible method for insect gene editing

Graphical abstract

Shirai et al. (2022) Cell Rep Methods

RNAi on BCAs

Genome editing RNAi

Stronger, bigger eaters'

Analysis and control of their behaviour

Orius strigicollis

Nesidiocoris tenuis

Propylea japonica

Neoseiulus californicus

By 2050, insect pests can be controlled without chemicals

Reducing the use of chemical pesticides contributes to world trade!

Thank you for your kind attention

Norihide HINOMOTO, Ph.D. (Kyoto University) E-mail: hinomoto.norihide.8m@kyoto-u.ac.jp

